

AoPS Community

1995 Korea National Olympiad

1995 Korean Math Olympiad

www.artofproblemsolving.com/community/c909694 by dcouchman, madmathlover, Pascual2005, parmenides51

– Da	y 1
------	-----

Problem 1 For any positive integer m, show that there exist integers a, b satisfying $|a| \le m$, $|b| \le m$, $0 < a + b\sqrt{2} \le \frac{1+\sqrt{2}}{m+2}$

- **Problem 3** Let *ABC* be an equilateral triangle of side 1, *D* be a point on *BC*, and r_1, r_2 be the inradii of triangles *ABD* and *ADC*. Express r_1r_2 in terms of p = BD and find the maximum of r_1r_2 .
- Day 2
- **Day 1** Let *O* and *R* be the circumcenter and circumradius of a triangle *ABC*, and let *P* be any point in the plane of the triangle. The perpendiculars PA_1 , PB_1 , PC_1 are drawn from *P* on *BC*, *CA*, *AB*. Express $S_{A_1B_1C_1}/S_{ABC}$ in terms of *R* and d = OP, where S_{XYZ} is the area of $\triangle XYZ$.
- Day 2 Let a, b be integers and p be a prime number such that:
 (i) p is the greatest common divisor of a and b;
 (ii) p² divides a.
 Prove that the polynomial xⁿ⁺² + axⁿ⁺¹ + bxⁿ + a + b cannot be decomposed into the product of two polynomials with integer coefficients and degree greater than 1.
- **Day 3** Let m, n be positive integers with $1 \le n < m$. A box is locked with several padlocks which must all be opened to open the box, and which all have different keys. The keys are distributed among m people. Suppose that among these people, no n can open the box, but any n + 1 can open it. Find the smallest possible number l of locks and then the total number of keys for which this is possible.

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

© 2022 AoPS Incorporated 1

Art of Problem Solving is an ACS WASC Accredited School.

Problem 2 find all functions from the nonegative integers into themselves, such that: $2f(m^2 + n^2) = f^2(m) + f^2(n)$ and for $m \ge n f(m^2) \ge f(n^2)$.