AoPS Community

1995 Korean Math Olympiad

www.artofproblemsolving.com/community/c909694
by dcouchman, madmathlover, Pascual2005, parmenides51

- \quad Day 1

Problem 1 For any positive integer m,show that there exist integers a, b satisfying
$|a| \leq m,|b| \leq m, 0<a+b \sqrt{2} \leq \frac{1+\sqrt{2}}{m+2}$
Problem 2 find all functions from the nonegative integers into themselves, such that: $2 f\left(m^{2}+n^{2}\right)=$ $f^{2}(m)+f^{2}(n)$ and for $m \geq n f\left(m^{2}\right) \geq f\left(n^{2}\right)$.

Problem 3 Let $A B C$ be an equilateral triangle of side $1, D$ be a point on $B C$, and r_{1}, r_{2} be the inradii of triangles $A B D$ and $A D C$. Express $r_{1} r_{2}$ in terms of $p=B D$ and find the maximum of $r_{1} r_{2}$.

- Day 2

Day 1 Let O and R be the circumcenter and circumradius of a triangle $A B C$, and let P be any point in the plane of the triangle. The perpendiculars $P A_{1}, P B_{1}, P C_{1}$ are drawn from P on $B C, C A, A B$. Express $S_{A_{1} B_{1} C_{1}} / S_{A B C}$ in terms of R and $d=O P$, where $S_{X Y Z}$ is the area of $\triangle X Y Z$.

Day 2 Let a, b be integers and p be a prime number such that:
(i) p is the greatest common divisor of a and b;
(ii) p^{2} divides a.

Prove that the polynomial $x^{n+2}+a x^{n+1}+b x^{n}+a+b$ cannot be decomposed into the product of two polynomials with integer coefficients and degree greater than 1 .

Day 3 Let m, n be positive integers with $1 \leq n<m$. A box is locked with several padlocks which must all be opened to open the box, and which all have different keys. The keys are distributed among m people. Suppose that among these people, no n can open the box, but any $n+1$ can open it. Find the smallest possible number l of locks and then the total number of keys for which this is possible.

