

AoPS Community

www.artofproblemsolving.com/community/c909771 by BigSams, k.vasilev

-	Day 1
1	Let $f(x) = x^2 + bx + 1$, where <i>b</i> is a real number. Find the number of integer solutions to the inequality $f(f(x) + x) < 0$.
2	Let ABC be an acute triangle with orthocenter H and circumcenter O . Let the intersection points of the perpendicular bisector of CH with AC and BC be X and Y respectively. Lines XO and YO cut AB at P and Q respectively. If $XP + YQ = AB + XY$, determine $\measuredangle OHC$.
3	Find all real numbers a, which satisfy the following condition:
	For every sequence a_1, a_2, a_3, \ldots of pairwise different positive integers, for which the inequality $a_n \leq an$ holds for every positive integer n , there exist infinitely many numbers in the sequence with sum of their digits in base 4038, which is not divisible by 2019.
-	Day 2
4	Determine all positive integers d , such that there exists an integer $k \ge 3$, such that One can arrange the numbers $d, 2d, \ldots, kd$ in a row, such that the sum of every two consecutive of them is a perfect square.
5	Let P be a 2019 -gon, such that no three of its diagonals concur at an internal point. We will call each internal intersection point of diagonals of P a knot. What is the greatest number of knots one can choose, such that there doesn't exist a cycle of chosen knots? (Every two adjacent knots in a cycle must be on the same diagonal and on every diagonal there are at most two knots from a cycle.)
6	Let <i>ABCDEF</i> be an inscribed hexagon with
	AB.CD.EF = BC.DE.FA
	Let B_1 be the reflection point of B with respect to AC and D_1 be the reflection point of D with

Let B_1 be the reflection point of B with respect to AC and D_1 be the reflection point of D with respect to CE, and finally let F_1 be the reflection point of F with respect to AE. Prove that $\triangle B_1 D_1 F_1 \sim BDF$.

Art of Problem Solving is an ACS WASC Accredited School.