Art of Problem Solving

AoPS Community

www.artofproblemsolving.com/community/c909771
by BigSams, k.vasilev

- Day 1

1 Let $f(x)=x^{2}+b x+1$, where b is a real number. Find the number of integer solutions to the inequality $f(f(x)+x)<0$.

2 Let $A B C$ be an acute triangle with orthocenter H and circumcenter O. Let the intersection points of the perpendicular bisector of $C H$ with $A C$ and $B C$ be X and Y respectively. Lines $X O$ and $Y O$ cut $A B$ at P and Q respectively. If $X P+Y Q=A B+X Y$, determine $\measuredangle O H C$.

3 Find all real numbers a, which satisfy the following condition:
For every sequence $a_{1}, a_{2}, a_{3}, \ldots$ of pairwise different positive integers, for which the inequality $a_{n} \leq a n$ holds for every positive integer n, there exist infinitely many numbers in the sequence with sum of their digits in base 4038, which is not divisible by 2019.

- Day 2

4 Determine all positive integers d, such that there exists an integer $k \geq 3$, such that One can arrange the numbers $d, 2 d, \ldots, k d$ in a row, such that the sum of every two consecutive of them is a perfect square.

5 Let P be a 2019-gon, such that no three of its diagonals concur at an internal point. We will call each internal intersection point of diagonals of P a knot. What is the greatest number of knots one can choose, such that there doesn't exist a cycle of chosen knots? (Every two adjacent knots in a cycle must be on the same diagonal and on every diagonal there are at most two knots from a cycle.)

6 Let $A B C D E F$ be an inscribed hexagon with

$$
A B \cdot C D \cdot E F=B C \cdot D E \cdot F A
$$

Let B_{1} be the reflection point of B with respect to $A C$ and D_{1} be the reflection point of D with respect to $C E$, and finally let F_{1} be the reflection point of F with respect to $A E$. Prove that $\triangle B_{1} D_{1} F_{1} \sim B D F$.

