AoPS Community

Mediterranean Mathematics Olympiad 2019

www.artofproblemsolving.com/community/c910541
by parmenides51

1 Let $\triangle A B C$ be a triangle with angle $\angle C A B=60^{\circ}$, let D be the intersection point of the angle bisector at A and the side $B C$, and let r_{B}, r_{C}, r be the respective radii of the incircles of $A B D$, $A D C, A B C$. Let b and c be the lengths of sides $A C$ and $A B$ of the triangle. Prove that

$$
\frac{1}{r_{B}}+\frac{1}{r_{C}}=2 \cdot\left(\frac{1}{r}+\frac{1}{b}+\frac{1}{c}\right)
$$

2 Let $m_{1}<m_{2}<\cdots<m_{s}$ be a sequence of $s \geq 2$ positive integers, none of which can be written as the sum of (two or more) distinct other numbers in the sequence. For every integer r with $1 \leq r<s$, prove that

$$
r \cdot m_{r}+m_{s} \geq(r+1)(s-1)
$$

(Proposed by Gerhard Woeginger, Austria)
3 Prove that there exist infinitely many positive integers x, y, z for which the sum of the digits in the decimal representation of $4 x^{4}+y^{4}-z^{2}+4 x y z$ is at most 2 .
(Proposed by Gerhard Woeginger, Austria)
4 Let P be a point in the interior of an equilateral triangle with height 1 , and let x, y, z denote the distances from P to the three sides of the triangle. Prove that

$$
x^{2}+y^{2}+z^{2} \geq x^{3}+y^{3}+z^{3}+6 x y z
$$

