AoPS Community

Danube Mathematical Competition 201

www.artofproblemsolving.com/community/c910574
by parmenides51, drEdrE

1 Let $A B C M$ be a quadrilateral and D be an interior point such that $A B C D$ is a parallelogram. It is known that $\angle A M B=\angle C M D$. Prove that $\angle M A D=\angle M C D$.

2 Let S be a set of positive integers such that: $\min \operatorname{Icm}(\mathrm{x}, \mathrm{y}): \mathrm{x}, \mathrm{y} \mathrm{S}, x \neq y \geq 2+\max \mathrm{S}$.
Prove that $\sum_{x \in S} \frac{1}{x} \leq \frac{3}{2}$.
3 Determine all positive integer numbers n satisfying the following condition:
the sum of the squares of any n prime numbers greater than 3 is divisible by n.
4 Given a positive integer number n, determine the maximum number of edges a triangle-free Hamiltonian simple graph on n vertices may have.

