

AoPS Community

2011 Danube Mathematical Competition

Danube Mathematical Competition 201

www.artofproblemsolving.com/community/c910574 by parmenides51, drEdrE

- **1** Let ABCM be a quadrilateral and D be an interior point such that ABCD is a parallelogram. It is known that $\angle AMB = \angle CMD$. Prove that $\angle MAD = \angle MCD$.
- 2 Let S be a set of positive integers such that: min lcm (x, y) : x, y S, $x \neq y \ge 2 + \max S$. Prove that $\sum_{x \in S} \frac{1}{x} \le \frac{3}{2}$.
- **3** Determine all positive integer numbers *n* satisfying the following condition: the sum of the squares of any *n* prime numbers greater than 3 is divisible by *n*.
- **4** Given a positive integer number *n*, determine the maximum number of edges a triangle-free Hamiltonian simple graph on *n* vertices may have.

