

AoPS Community

2012 Danube Mathematical Competition

Danube Mathematical Competition 2012

www.artofproblemsolving.com/community/c910575 by parmenides51, Ghd

-	Junior
1	 a) Exist <i>a</i>, <i>b</i>, <i>c</i>, ∈ <i>N</i>, such that the numbers <i>ab</i> + 1, <i>bc</i> + 1 and <i>ca</i> + 1 are simultaneously even perfect squares ? b) Show that there is an infinity of natural numbers (distinct two by two) <i>a</i>, <i>b</i>, <i>c</i> and <i>d</i>, so that the numbers <i>ab</i> + 1, <i>bc</i> + 1, <i>cd</i> + 1 and <i>da</i> + 1 are simultaneously perfect squares.
2	Consider the natural number prime $p, p > 5$. From the decimal number $\frac{1}{p}$, randomly remove 2012 numbers, after the comma. Show that the remaining number can be represented as $\frac{a}{b}$, where a and b are coprime numbers, and b is multiple of p .
3	Let ABC be a triangle with $\angle BAC = 90^{\circ}$. Angle bisector of the $\angle CBA$ intersects the segment (AB) at point E . If there exists $D \in (CE)$ so that $\angle DAC = \angle BDE = x^{\circ}$, calculate x .
4	Let A be a subset with seven elements of the set $\{1, 2, 3,, 26\}$. Show that there are two distinct elements of A, having the same sum of their elements.
-	Senior
1	Given a positive integer n , determine the maximum number of lattice points in the plane a square of side length $n + \frac{1}{2n+1}$ may cover.
2	Let ABC be an acute triangle and let A_1 , B_1 , C_1 be points on the sides BC , CA and AB , respectively. Show that the triangles ABC and $A_1B_1C_1$ are similar ($\angle A = \angle A_1$, $\angle B = \angle B_1$, $\angle C = \angle C_1$) if and only if the orthocentre of the triangle $A_1B_1C_1$ and the circumcentre of the triangle ABC coincide.
3	Let p and $q, p < q$, be two primes such that $1 + p + p^2 + + p^m$ is a power of q for some positive integer m , and $1 + q + q^2 + + q^n$ is a power of p for some positive integer n . Show that $p = 2$ and $q = 2^t - 1$ where t is prime.
4	Given a positive integer n , show that the set $\{1, 2,, n\}$ can be partitioned into m sets, each with the same sum, if and only if m is a divisor of $\frac{n(n+1)}{2}$ which does not exceed $\frac{n+1}{2}$.

AoPS Online 🟟 AoPS Academy 🔯 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.