AoPS Community

2013 Danube Mathematical Competition

Danube Mathematical Competition 2013

www.artofproblemsolving.com/community/c910576
by parmenides51

- Junior

1 Determine the natural numbers $n \geq 2$ for which exist $x_{1}, x_{2}, \ldots, x_{n} \in R^{*}$, such that

$$
x_{1}+x_{2}+\ldots+x_{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}}=0
$$

2 Consider 64 distinct natural numbers, at most equal to 2012. Show that it is possible to choose four of them, denoted as a, b, c, d such that $a+b-c-d$ to be a multiple of 2013

3 Determine the natural numbers m, n such as $85^{m}-n^{4}=4$
4 Let $A B C D$ be a rectangle with $A B \neq B C$ and the center the point O. Perpendicular from O on $B D$ intersects lines $A B$ and $B C$ in points E and F respectively. Points M and N are midpoints of segments $[C D]$ and $[A D]$ respectively. Prove that $F M \perp E N$.

- \quad Senior

1 Given six points on a circle, A, a, B, b, C, c, show that the Pascal lines of the hexagrams $A a B b C c, A b B c C a, A$ are concurrent.

2 Let a, b, c, n be four integers, where $\mathrm{n} \geq 2$, and let p be a prime dividing both $a^{2}+a b+b^{2}$ and $a^{n}+b^{n}+c^{n}$, but not $a+b+c$. for instance, $a \equiv b \equiv-1(\bmod 3), c \equiv 1(\bmod 3), n$ a positive even integer, and $p=3$ or $a=4, b=7, c=-13, n=5$, and $p=31$ satisfy these conditions. Show that n and $p-1$ are not coprime.

3 Show that, for every integer $r \geq 2$, there exists an r-chromatic simple graph (no loops, nor multiple edges) which has no cycle of less than 6 edges

4 Show that there exists a proper non-empty subset S of the set of real numbers such that, for every real number x, the set $\{n x+S: n \in N\}$ is finite, where $n x+S=\{n x+s: s \in S\}$

