

Danube Mathematical Competition 2014

AoPS Community

2014 Danube Mathematical Competition

www.artofproblemsolving.com/community/c910577 by parmenides51	
-	Junior
1	Determine the natural number $a = \frac{p+q}{r} + \frac{q+r}{p} + \frac{r+p}{q}$ where p, q and r are prime positive numbers.
2	We call word a sequence of letters $\overline{l_1 l_2 \dots l_n}$, $n \ge 1$. A word $\overline{l_1 l_2 \dots l_n}$, $n \ge 1$ is called <i>palindrome</i> if $l_k = l_{n-k+1}$, for any $k, 1 \le k \le n$. Consider a word $X = \overline{l_1 l_2 \dots l_{2014}}$ in which $l_k \in \{A, B\}$, for any $k, 1 \le k \le 2014$. Prove that there are at least 806 <i>palindrome</i> words to "stick" together to get word X.
3	Let ABC be a triangle with $\angle A < 90^{\circ}$, $AB \neq AC$. Denote H the orthocenter of triangle ABC , N the midpoint of segment $[AH]$, M the midpoint of segment $[BC]$ and D the intersection point of the angle bisector of $\angle BAC$ with the segment $[MN]$. Prove that $< ADH = 90^{\circ}$
4	Consider the real numbers $a_1, a_2,, a_{2n}$ whose sum is equal to 0. Prove that among pairs (a_i, a_j) , $i < j$ where $i, j \in \{1, 2,, 2n\}$.there are at least $2n - 1$ pairs with the property that $a_i + a_j \ge 0$.
_	Senior
1	Two circles γ_1 and γ_2 cross one another at two points; let A be one of these points. The tangent to γ_1 at A meets again γ_2 at B , the tangent to γ_2 at A meets again γ_1 at C , and the line BC meets again γ_1 and γ_2 at D_1 and D_2 , respectively. Let E_1 and E_2 be interior points of the segments AD_1 and AD_2 , respectively, such that $AE_1 = AE_2$. The lines BE_1 and AC meet at M , the lines CE_2 and AB meet at N , and the lines MN and BC meet at P . Show that the line PA is tangent to the circle ABC .
2	Let S be a set of positive integers such that $\lfloor \sqrt{x} \rfloor = \lfloor \sqrt{y} \rfloor$ for all $x, y \in S$. Show that the products xy , where $x, y \in S$, are pairwise distinct.
3	Given any integer $n \ge 2$, show that there exists a set of n pairwise coprime composite integers in arithmetic progression.
4	Let <i>n</i> be a positive integer and let \triangle be the closed triangular domain with vertices at the lattice points $(0,0), (n,0)$ and $(0,n)$. Determine the maximal cardinality a set <i>S</i> of lattice points in \triangle may have, if the line through every pair of distinct points in <i>S</i> is parallel to no side of \triangle .

AOPSOnline AOPSAcademy AOPS