AoPS Community

2014 Danube Mathematical Competition

Danube Mathematical Competition 2014

www.artofproblemsolving.com/community/c910577
by parmenides51

- Junior

1 Determine the natural number $a=\frac{p+q}{r}+\frac{q+r}{p}+\frac{r+p}{q}$ where p, q and r are prime positive numbers.

2 We call word a sequence of letters $\overline{l_{1} l_{2} \ldots l_{n}}, n \geq 1$.
A word $\overline{l_{1} l_{2} \ldots l_{n}}, n \geq 1$ is called palindrome if $l_{k}=l_{n-k+1}$, for any $k, 1 \leq k \leq n$.
Consider a word $X=\overline{l_{1} l_{2} \ldots l_{2014}}$ in which $l_{k} \in\{A, B\}$, for any $k, 1 \leq k \leq 2014$.
Prove that there are at least 806 palindrome words to "stick" together to get word X.
3 Let $A B C$ be a triangle with $\angle A<90^{\circ}, A B \neq A C$. Denote H the orthocenter of triangle $A B C, N$ the midpoint of segment $[A H], M$ the midpoint of segment $[B C]$ and D the intersection point of the angle bisector of $\angle B A C$ with the segment $[M N]$. Prove that $<A D H=90^{\circ}$

4 Consider the real numbers $a_{1}, a_{2}, \ldots, a_{2 n}$ whose sum is equal to 0 . Prove that among pairs $\left(a_{i}, a_{j}\right), i<$ j where $i, j \in\{1,2, \ldots, 2 n\}$.there are at least $2 n-1$ pairs with the property that $a_{i}+a_{j} \geq 0$.

- \quad Senior

1 Two circles γ_{1} and γ_{2} cross one another at two points; let A be one of these points. The tangent to γ_{1} at A meets again γ_{2} at B, the tangent to γ_{2} at A meets again γ_{1} at C, and the line $B C$ meets again γ_{1} and γ_{2} at D_{1} and D_{2}, respectively. Let E_{1} and E_{2} be interior points of the segments $A D_{1}$ and $A D_{2}$, respectively, such that $A E_{1}=A E_{2}$. The lines $B E_{1}$ and $A C$ meet at M, the lines $C E_{2}$ and $A B$ meet at N, and the lines $M N$ and $B C$ meet at P. Show that the line $P A$ is tangent to the circle $A B C$.

2 Let S be a set of positive integers such that $\lfloor\sqrt{x}\rfloor=\lfloor\sqrt{y}\rfloor$ for all $x, y \in S$. Show that the products $x y$, where $x, y \in S$, are pairwise distinct.

3 Given any integer $n \geq 2$, show that there exists a set of n pairwise coprime composite integers in arithmetic progression.
$4 \quad$ Let n be a positive integer and let \triangle be the closed triangular domain with vertices at the lattice points $(0,0),(n, 0)$ and $(0, n)$. Determine the maximal cardinality a set S of lattice points in \triangle may have, if the line through every pair of distinct points in S is parallel to no side of \triangle.

