

AoPS Community

2018 Danube Mathematical Competition

Danube Mathematical Competition 2018

www.artofproblemsolving.com/community/c910579 by parmenides51, fattypiggy123

-	Junior
1	Find all the pairs (n, m) of positive integers which fulfil simultaneously the conditions: i) the number <i>n</i> is composite; ii) if the numbers $d_1, d_2,, d_k, k \in N^*$ are all the proper divisors of <i>n</i> , then the numbers $d_1 + 1, d_2 + 1,, d_k + 1$ are all the proper divisors of <i>m</i> .
2	Let <i>ABC</i> be a triangle such that in its interior there exists a point <i>D</i> with $\angle DAC = \angle DCA = 30^{\circ}$ and $\angle DBA = 60^{\circ}$. Denote <i>E</i> the midpoint of the segment <i>BC</i> , and take <i>F</i> on the segment <i>AC</i> so that $AF = 2FC$. Prove that $DE \perp EF$.
3	Find all the positive integers n with the property: there exists an integer $k > 2$ and the positive rational numbers $a_1, a_2,, a_k$ such that $a_1 + a_2 + + a_k = a_1a_2a_k = n$.
4	Let <i>M</i> be the set of positive odd integers. For every positive integer <i>n</i> , denote $A(n)$ the number of the subsets of <i>M</i> whose sum of elements equals <i>n</i> . For instance, $A(9) = 2$, because there are exactly two subsets of <i>M</i> with the sum of their elements equal to 9: {9} and {1,3,5}. a) Prove that $A(n) \le A(n+1)$ for every integer $n \ge 2$. b) Find all the integers $n \ge 2$ such that $A(n) = A(n+1)$
_	Senior
1	Suppose we have a necklace of n beads. Each bead is labeled with an integer and the sum of all these labels is $n - 1$. Prove that we can cut the necklace to form a string, whose consecutive labels $x_1, x_2,, x_n$ satisfy $\sum_{i=1}^k x_i \le k - 1$ for any $k = 1,, n$
2	Prove that there are in finitely many pairs of positive integers (m, n) such that simultaneously m divides $n^2 + 1$ and n divides $m^2 + 1$.
3	Let ABC be an acute non isosceles triangle. The angle bisector of angle A meets again the circumcircle of the triangle ABC in D . Let O be the circumcenter of the triangle ABC . The angle bisectors of $\angle AOB$, and $\angle AOC$ meet the circle γ of diameter AD in P and Q respectively. The line PQ meets the perpendicular bisector of AD in R . Prove that $AR//BC$.

AoPS Community

2018 Danube Mathematical Competition

4 Let $n \ge 3$ be an odd number and suppose that each square in a $n \times n$ chessboard is colored either black or white. Two squares are considered adjacent if they are of the same color and share a common vertex and two squares a, b are considered connected if there exists a sequence of squares c_1, \ldots, c_k with $c_1 = a, c_k = b$ such that c_i, c_{i+1} are adjacent for $i = 1, 2, \ldots, k-1$.

Find the maximal number M such that there exists a coloring admitting M pairwise disconnected squares.

Act of Problem Solving is an ACS WASC Accredited School.