AoPS Community

2018 Danube Mathematical Competition

Danube Mathematical Competition 2018

www.artofproblemsolving.com/community/c910579
by parmenides51, fattypiggy 123

- Junior

1 Find all the pairs (n, m) of positive integers which fulfil simultaneously the conditions:
i) the number n is composite;
ii) if the numbers $d_{1}, d_{2}, \ldots, d_{k}, k \in N^{*}$ are all the proper divisors of n, then the numbers $d_{1}+$ $1, d_{2}+1, \ldots, d_{k}+1$ are all the proper divisors of m.

2 Let $A B C$ be a triangle such that in its interior there exists a point D with $\angle D A C=\angle D C A=$ 30° and $\angle D B A=60^{\circ}$. Denote E the midpoint of the segment $B C$, and take F on the segment $A C$ so that $A F=2 F C$. Prove that $D E \perp E F$.

3 Find all the positive integers n with the property: there exists an integer $k>2$ and the positive rational numbers $a_{1}, a_{2}, \ldots, a_{k}$ such that $a_{1}+a_{2}+. .+a_{k}=a_{1} a_{2} \ldots a_{k}=n$.

4 Let M be the set of positive odd integers.
For every positive integer n, denote $A(n)$ the number of the subsets of M whose sum of ele ments equals n.
For instance, $A(9)=2$, because there are exactly two subsets of M with the sum of their elements equal to 9: $\{9\}$ and $\{1,3,5\}$.
a) Prove that $A(n) \leq A(n+1)$ for every integer $n \geq 2$.
b) Find all the integers $n \geq 2$ such that $A(n)=A(n+1)$

- \quad Senior

1 Suppose we have a necklace of n beads.
Each bead is labeled with an integer and the sum of all these labels is $n-1$.
Prove that we can cut the necklace to form a string, whose consecutive labels $x_{1}, x_{2}, \ldots, x_{n}$ satisfy $\sum_{i=1}^{k} x_{i} \leq k-1$ for any $k=1, \ldots, n$

2 Prove that there are in finitely many pairs of positive integers (m, n) such that simultaneously m divides $n^{2}+1$ and n divides $m^{2}+1$.

3 Let $A B C$ be an acute non isosceles triangle. The angle bisector of angle A meets again the circumcircle of the triangle $A B C$ in D. Let O be the circumcenter of the triangle $A B C$. The angle bisectors of $\angle A O B$, and $\angle A O C$ meet the circle γ of diameter $A D$ in P and Q respectively. The line $P Q$ meets the perpendicular bisector of $A D$ in R. Prove that $A R / / B C$.

4 Let $n \geq 3$ be an odd number and suppose that each square in a $n \times n$ chessboard is colored either black or white. Two squares are considered adjacent if they are of the same color and share a common vertex and two squares a, b are considered connected if there exists a sequence of squares c_{1}, \ldots, c_{k} with $c_{1}=a, c_{k}=b$ such that c_{i}, c_{i+1} are adjacent for $i=$ $1,2, \ldots, k-1$.

Find the maximal number M such that there exists a coloring admitting M pairwise disconnected squares.

