

## **AoPS Community**

## 2007 Danube Mathematical Competition

## **Danube Mathematical Competition 2007**

www.artofproblemsolving.com/community/c910580 by freemind

- 1 Let  $n \ge 2$  be a positive integer and denote by  $S_n$  the set of all permutations of the set  $\{1, 2, ..., n\}$ . For  $\sigma \in S_n$  define  $l(\sigma)$  to be  $\min_{1 \le i \le n-1} |\sigma(i+1) - \sigma(i)|$ . Determine  $\max_{\sigma \in S_n} l(\sigma)$ .
- **2** Let *ABCD* be an inscribed quadrilateral and let *E* be the midpoint of the diagonal *BD*. Let  $\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4$  be the circumcircles of triangles *AEB*, *BEC*, *CED* and *DEA* respectively. Prove that if  $\Gamma_4$  is tangent to the line *CD*, then  $\Gamma_1, \Gamma_2, \Gamma_3$  are tangent to the lines *BC*, *AB*, *AD* respectively.
- **3** For each positive integer n, define f(n) as the exponent of the 2 in the decomposition in prime factors of the number n!. Prove that the equation n f(n) = a has infinitely many solutions for any positive integer a.
- **4** Let a, n be positive integers such that  $a \ge (n-1)!$ . Prove that there exist n distinct prime numbers  $p_1, \ldots, p_n$  so that  $p_i | a + i$ , for all  $i = \overline{1, \ldots, n}$ .

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.