AoPS Community

Danube Mathematical Competition 2007

www.artofproblemsolving.com/community/c910580
by freemind

1 Let $n \geq 2$ be a positive integer and denote by S_{n} the set of all permutations of the set $\{1,2, \ldots, n\}$. For $\sigma \in S_{n}$ define $l(\sigma)$ to be $\min _{1 \leq i \leq n-1}|\sigma(i+1)-\sigma(i)|$. Determine $\max _{\sigma \in S_{n}} l(\sigma)$.

2 Let $A B C D$ be an inscribed quadrilateral and let E be the midpoint of the diagonal $B D$. Let $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}$ be the circumcircles of triangles $A E B, B E C, C E D$ and $D E A$ respectively. Prove that if Γ_{4} is tangent to the line $C D$, then $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ are tangent to the lines $B C, A B, A D$ respectively.

3 For each positive integer n, define $f(n)$ as the exponent of the 2 in the decomposition in prime factors of the number n !. Prove that the equation $n-f(n)=a$ has infinitely many solutions for any positive integer a.

4 Let a, n be positive integers such that $a \geq(n-1)$!. Prove that there exist n distinct prime numbers p_{1}, \ldots, p_{n} so that $p_{i} \mid a+i$, for all $i=\overline{1, \ldots, n}$.

