

AoPS Community

2009 Danube Mathematical Competition

Danube Mathematical Competition 2009

www.artofproblemsolving.com/community/c910582 by LarrySnake, parmenides51, anonymouslonely

1 Let be $\triangle ABC$. Let A', B', C' be the foot of perpendiculars from A, B and C respectively. The points *E* and *F* are on the sides *CB*' and *BC*' respectively, such that $B'E \cdot C'F = BF \cdot CE$. Show that AEA'F is cyclic. 2 Prove that all the positive integer numbers, except for the powers of 2, can be written as the sum of (at least two) consecutive natural numbers . 3 Let n be a natural number. Determine the minimal number of equilateral triangles of side 1 to cover the surface of an equilateral triangle of side $n + \frac{1}{2n}$. Let be a, b, c positive integers. Prove that $|a - b\sqrt{c}| < \frac{1}{2b}$ is true if and only if $|a^2 - b^2c| < \sqrt{c}$. 4 5 Let σ, τ be two permutations of the quantity $\{1, 2, ..., n\}$. Prove that there is a function $f : \{1, 2, ..., n\} \rightarrow \{-1, 1\}$ such that for any $1 \le i \le j \le n$, we have $\left|\sum_{k=i}^{j}f(\sigma(k))\right|\leq 2$ and $\left|\sum_{k=i}^{j}f(\tau(k))\right|\leq 2$

AoPS Online AoPS Academy AoPS Caster

Art of Problem Solving is an ACS WASC Accredited School.