AoPS Community

Danube Mathematical Competition 2009

www.artofproblemsolving.com/community/c910582
by LarrySnake, parmenides51, anonymouslonely

1 Let be $\triangle A B C$.Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the foot of perpendiculars from A, B and C respectively. The points E and F are on the sides $C B^{\prime}$ and $B C^{\prime}$ respectively, such that $B^{\prime} E \cdot C^{\prime} F=B F \cdot C E$. Show that $A E A^{\prime} F$ is cyclic.

2 Prove that all the positive integer numbers, except for the powers of 2 , can be written as the sum of (at least two) consecutive natural numbers .

3 Let n be a natural number. Determine the minimal number of equilateral triangles of side 1 to cover the surface of an equilateral triangle of side $n+\frac{1}{2 n}$.

4 Let be a, b, c positive integers. Prove that $|a-b \sqrt{c}|<\frac{1}{2 b}$ is true if and only if $\left|a^{2}-b^{2} c\right|<\sqrt{c}$.
5 Let σ, τ be two permutations of the quantity $\{1,2, \ldots, n\}$.
Prove that there is a function $f:\{1,2, \ldots, n\} \rightarrow\{-1,1\}$ such that for any $1 \leq i \leq j \leq n$, we have $\left|\sum_{k=i}^{j} f(\sigma(k))\right| \leq 2$ and $\left|\sum_{k=i}^{j} f(\tau(k))\right| \leq 2$

