

AoPS Community

Final Round - 2008

www.artofproblemsolving.com/community/c91066 by rkm0959, johnkwon0328

pressed, call it 'operation.'

-	Day 1
1	Hexagon $ABCDEF$ is inscribed in a circle O . Let $BD \cap CF = G$, $AC \cap BE = H$, $AD \cap CE = I$ Following conditions are satisfied. $BD \perp CF$, $CI = AI$
	Prove that $CH = AH + DE$ is equivalent to $GH \times BD = BC \times DE$
2	Find all integer polynomials f such that there are infinitely many pairs of relatively prime nat- ural numbers (a, b) so that $a + b \mid f(a) + f(b)$.
3	Determine all functions $f : \mathbb{R}^+ \to \mathbb{R}$ that satisfy the following $f(1) = 2008$, $ f(x) \le x^2 + 1004^2$, $f\left(x + y + \frac{1}{x} + \frac{1}{y}\right) = f\left(x + \frac{1}{y}\right) + f\left(y + \frac{1}{x}\right)$.
-	Day 2
4	For any positive integer $m \ge 2$ define $A_m = \{m+1, 3m+2, 5m+3, 7m+4, \dots, (2k-1)m+k, \dots\}$.
	(1) For every $m \ge 2$, prove that there exists a positive integer a that satisfies $1 \le a < m$ and $2^a \in A_m$ or $2^a + 1 \in A_m$.
	(2) For a certain $m \ge 2$, let a, b be positive integers that satisfy $2^a \in A_m$, $2^b + 1 \in A_m$. Let a_0, b_0 be the least such pair a, b . Find the relation between a_0 and b_0 .
5	Quadrilateral $ABCD$ is inscribed in a circle O . Let $AB \cap CD = E$ and $P \in BC, EP \perp BC$, $R \in AD, ER \perp AD$, $EP \cap AD = Q, ER \cap BC = S$ Let K be the midpoint of QS
	Prove that E, K, O are collinear.
6	There is $n \times n$ chessboard. Each square has a number between 0 and k. There is a button for each row and column, which increases the number of n numbers of the row or column the button represents (if the number of the square is k, then it becomes 0). If certain button is

And we have a chessboard which is filled with 0(for all squares). After some 'operation's, the numbers of squares are different now. Prove that we can make all of the number 0 within kn 'operation's.

AoPS Community

2008 Korea - Final Round

AOPS Online ORDER AOPS Academy ORDER AOPS CALLER Art of Problem Solving is an ACS WASC Accredited School.