AoPS Community

Final Round - 2008

www.artofproblemsolving.com/community/c91066
by rkm0959, johnkwon0328

- Day 1

1 Hexagon $A B C D E F$ is inscribed in a circle O.
Let $B D \cap C F=G, A C \cap B E=H, A D \cap C E=I$
Following conditions are satisfied. $B D \perp C F, C I=A I$
Prove that $C H=A H+D E$ is equivalent to $G H \times B D=B C \times D E$
2 Find all integer polynomials f such that there are infinitely many pairs of relatively prime natural numbers (a, b) so that $a+b \mid f(a)+f(b)$.

3 Determine all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ that satisfy the following $f(1)=2008,|f(x)| \leq x^{2}+1004^{2}$, $f\left(x+y+\frac{1}{x}+\frac{1}{y}\right)=f\left(x+\frac{1}{y}\right)+f\left(y+\frac{1}{x}\right)$.

- \quad Day 2

4 For any positive integer $m \geq 2$ define $A_{m}=\{m+1,3 m+2,5 m+3,7 m+4, \ldots,(2 k-1) m+k, \ldots\}$.
(1) For every $m \geq 2$, prove that there exists a positive integer a that satisfies $1 \leq a<m$ and $2^{a} \in A_{m}$ or $2^{a}+1 \in A_{m}$.
(2) For a certain $m \geq 2$, let a, b be positive integers that satisfy $2^{a} \in A_{m}, 2^{b}+1 \in A_{m}$. Let a_{0}, b_{0} be the least such pair a, b.
Find the relation between a_{0} and b_{0}.
5 Quadrilateral $A B C D$ is inscribed in a circle O.
Let $A B \cap C D=E$ and $P \in B C, E P \perp B C, R \in A D, E R \perp A D, E P \cap A D=Q, E R \cap B C=S$ Let K be the midpoint of $Q S$

Prove that E, K, O are collinear.
6 There is $n \times n$ chessboard. Each square has a number between 0 and k. There is a button for each row and column, which increases the number of n numbers of the row or column the button represents(if the number of the square is k, then it becomes 0). If certain button is pressed, call it 'operation.'

And we have a chessboard which is filled with 0(for all squares). After some 'operation's, the numbers of squares are different now. Prove that we can make all of the number 0 within $k n$ 'operation's.

