

AoPS Community

2019 Spain Mathematical Olympiad

Spain Mathematical Olympiad 2019

www.artofproblemsolving.com/community/c911071 by parmenides51, juanbri, BG71

-	Day 1
1	An integer set T is orensan if there exist integers a;b;c , where a and c are part of T , but b is not part of T . Count the number of subsets T of 1,2,,2019 which are orensan.
2	Determine if there exists a finite set S formed by positive prime numbers so that for each integer $n \ge 2$, the number $2^2 + 3^2 + + n^2$ is a multiple of some element of S.
3	The real numbers a , b and c verify that the polynomial $p(x) = x^4 + ax^3 + bx^2 + ax + c$ has exactly three distinct real roots; these roots are equal to $\tan y$, $\tan 2y$ and $\tan 3y$, for some real number y . Find all possible values of y , $0 \le y < \pi$.
-	Day 2
4	Find all pairs of integers (x, y) that satisfy the equation $3^4 2^3 (x^2 + y^2) = x^3 y^3$
5	We consider all pairs (x, y) of real numbers such that $0 \le x \le y \le 1$. Let $M(x, y)$ the maximum value of the set $A = \{xy, 1 - x - y + xy, x + y - 2xy\}.$
	Find the minimum value that $M(x, y)$ can take for all these pairs (x, y) .
6	In the scalene triangle ABC , the bisector of angle A cuts side BC at point D . The tangent lines to the circumscribed circunferences of triangles ABD and ACD on point D, cut lines AC and AB on points E and F respectively. Let G be the intersection point of lines BE and CF .

Prove that angles EDG and ADF are equal.

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.