AoPS Community

Spain Mathematical Olympiad 2019

www.artofproblemsolving.com/community/c911071
by parmenides51, juanbri, BG71

- Day 1

1 An integer set \boldsymbol{T} is orensan if there exist integers $\mathbf{a} \mathbf{j} \mathbf{b} \mathbf{j} \mathbf{c}$, where \mathbf{a} and \mathbf{c} are part of \boldsymbol{T}, but \mathbf{b} is not part of \boldsymbol{T}. Count the number of subsets \boldsymbol{T} of 1,2,...,2019 which are orensan.

2 Determine if there exists a finite set S formed by positive prime numbers so that for each integer $n \geq 2$, the number $2^{2}+3^{2}+\ldots+n^{2}$ is a multiple of some element of S.

3 The real numbers a, b and c verify that the polynomial $p(x)=x^{4}+a x^{3}+b x^{2}+a x+c$ has exactly three distinct real roots; these roots are equal to $\tan y, \tan 2 y$ and $\tan 3 y$, for some real number y. Find all possible values of $y, 0 \leq y<\pi$.

- Day 2
$4 \quad$ Find all pairs of integers (x, y) that satisfy the equation $3^{4} 2^{3}\left(x^{2}+y^{2}\right)=x^{3} y^{3}$
5 We consider all pairs (\mathbf{x}, y) of real numbers such that $0 \leq x \leq y \leq 1$. Let $M(x, y)$ the maximum value of the set

$$
A=\{x y, 1-x-y+x y, x+y-2 x y\} .
$$

Find the minimum value that $M(x, y)$ can take for all these pairs (x, y).
6 In the scalene triangle $A B C$, the bisector of angle A cuts side $B C$ at point D.
The tangent lines to the circumscribed circunferences of triangles $A B D$ and $A C D$ on point D , cut lines $A C$ and $A B$ on points E and F respectively. Let G be the intersection point of lines $B E$ and $C F$.
Prove that angles $E D G$ and $A D F$ are equal.

