www.artofproblemsolving.com/community/c911265
by khan.academy

P1 Prove that there exist infinitely many pairs of different positive integers (m, n) for which $m!n$! is a square of an integer.

Proposed by Anton Trygub
P2 Let H be orthocenter of an acute $\triangle A B C, M$ is a midpoint of $A C$. Line $M H$ meets lines $A B, B C$ at points A_{1}, C_{1} respectively, A_{2} and C_{2} are projections of A_{1}, C_{1} onto line $B H$ respectively. Prove that lines $C A_{2}, A C_{2}$ meet at circumscribed circle of $\triangle A B C$.

Proposed by Anton Trygub
P3 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for any real x, y holds equality

$$
f(x f(y))+f(x y)=2 f(x) y
$$

Proposed by Arseniy Nikolaev

