Art of Problem Solving

AoPS Community

Balkan MO Shortlist 2014

www.artofproblemsolving.com/community/c914499
by parmenides51, tenplusten, shivangjindal, Orkhan-Ashraf_2002, arberig, dizzy, Ifetahu

- Algebra

A1 A1 Let a, b, c be positive reals numbers such that $a+b+c=1$. Prove that $2\left(a^{2}+b^{2}+c^{2}\right) \geq$ $\frac{1}{9}+15 a b c$

A2 Let x, y and z be positive real numbers such that $x y+y z+x z=3 x y z$. Prove that

$$
x^{2} y+y^{2} z+z^{2} x \geq 2(x+y+z)-3
$$

and determine when equality holds.
UK - David Monk
A3 A3 The sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by $a_{1}=a_{2}=1, a_{2 n+1}=2 a_{2 n}-a_{n}$ and $a_{2 n+2}=2 a_{2 n+1}$ for $n \in N$.Prove that if $n>3$ and $n-3$ is divisible by 8 then a_{n} is divisible by 5

A4 \quad A4 Let $m_{1}, m_{2}, m_{3}, n_{1}, n_{2}$ and n_{3} be positive real numbers such that

$$
\left(m_{1}-n_{1}\right)\left(m_{2}-n_{2}\right)\left(m_{3}-n_{3}\right)=m_{1} m_{2} m_{3}-n_{1} n_{2} n_{3}
$$

Prove that

$$
\left(m_{1}+n_{1}\right)\left(m_{2}+n_{2}\right)\left(m_{3}+n_{3}\right) \geq 8 m_{1} m_{2} m_{3}
$$

A5 $\quad A 5$ Let $n \in N, n>2$, and suppose $a_{1}, a_{2}, \ldots, a_{2 n}$ is a permutation of the numbers $1,2, \ldots, 2 n$ such that $a_{1}<a_{3}<\ldots<a_{2 n-1}$ and $a_{2}>a_{4}>\ldots>a_{2 n}$. Prove that

$$
\left(a_{1}-a_{2}\right)^{2}+\left(a_{3}-a_{4}\right)^{2}+\ldots+\left(a_{2 n-1}-a_{2 n}\right)^{2}>n^{3}
$$

A6 $A 6$ The sequence a_{0}, a_{1}, \ldots is defined by the initial conditions $a_{0}=1, a_{1}=6$ and the recursion $a_{n+1}=4 a_{n}-a_{n-1}+2$ for $n>1$. Prove that $a_{2^{k}-1}$ has at least three prime factors for every positive integer $k>3$.

A7 A7 Prove that for all $x, y, z>0$ with $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$ and $0 \leq a, b, c<1$ the following inequality holds

$$
\frac{x^{2}+y^{2}}{1-a^{z}}+\frac{y^{2}+z^{2}}{1-b^{x}}+\frac{z^{2}+x^{2}}{1-c^{y}} \geq \frac{6(x+y+z)}{1-a b c}
$$

- Combinatorics

C1 The International Mathematical Olympiad is being organized in Japan, where a folklore belief is that the number 4 brings bad luck. The opening ceremony takes place at the Grand Theatre where each row has the capacity of 55 seats. What is the maximum number of contestants that can be seated in a single row with the restriction that no two of them are 4 seats apart (so that bad luck during the competition is avoided)?

C2 Let $M=\{1,2, \ldots, 2013\}$ and let Γ be a circle. For every nonempty subset B of the set M, denote by $S(B)$ sum of elements of the set B, and define $S(\varnothing)=0$ (\varnothing is the empty set). Is it possible to join every subset B of M with some point A on the circle Γ so that following conditions are fulfilled:

1. Different subsets are joined with different points;
2. All joined points are vertices of a regular polygon;
3. If $A_{1}, A_{2}, \ldots, A_{k}$ are some of the joined points, $k>2$, such that $A_{1} A_{2} \ldots A_{k}$ is a regular $k-g o n$, then 2014 divides $S\left(B_{1}\right)+S\left(B_{2}\right)+\ldots+S\left(B_{k}\right)$?

C3 Let n be a positive integer. A regular hexagon with side length n is divided into equilateral triangles with side length 1 by lines parallel to its sides.
Find the number of regular hexagons all of whose vertices are among the vertices of those equilateral triangles.
UK - Sahl Khan

- Geometry

G1 Let $A B C$ be an isosceles triangle, in which $A B=A C$, and let M and N be two points on the sides $B C$ and $A C$, respectively such that $\angle B A M=\angle M N C$. Suppose that the lines $M N$ and $A B$ intersects at P. Prove that the bisectors of the angles $\angle B A M$ and $\angle B P M$ intersects at a point lying on the line $B C$

G2 Triangle $A B C$ is said to be perpendicular to triangle $D E F$ if the perpendiculars from A to $E F$, from B to $F D$ and from C to $D E$ are concurrent. Prove that if $A B C$ is perpendicular to $D E F$, then $D E F$ is perpendicular to $A B C$

G3 Let $\triangle A B C$ be an isosceles. $(A B=A C)$. Let D and E be two points on the side $B C$ such that $D \in B E, E \in D C$ and $2 \angle D A E=\angle B A C$. Prove that we can construct a triangle $X Y Z$ such that $X Y=B D, Y Z=D E$ and $Z X=E C$. Find $\angle B A C+\angle Y X Z$.

AoPS Community

2014 Balkan MO Shortlist

G4 Let $A_{0} B_{0} C_{0}$ be a triangle with area equal to $\sqrt{2}$. We consider the excenters A_{1}, B_{1} and C_{1} then we consider the excenters , say A_{2}, B_{2} and C_{2}, of the triangle $A_{1} B_{1} C_{1}$. By continuing this procedure ,examine if it is possible to arrive to a triangle $A_{n} B_{n} C_{n}$ with all coordinates rational.

G5 Let $A B C D$ be a trapezium inscribed in a circle k with diameter $A B$. A circle with center B and radius $B E$,where E is the intersection point of the diagonals $A C$ and $B D$ meets k at points K and L. If the line, perpendicular to $B D$ at E, intersects $C D$ at M, prove that $K M \perp D L$.

G6 In $\triangle A B C$ with $A B=A C, M$ is the midpoint of $B C, H$ is the projection of M onto $A B$ and D is arbitrary point on the side $A C$. Let E be the intersection point of the parallel line through B to $H D$ with the parallel line through C to $A B$. Prove that $D M$ is the bisector of $\angle A D E$.

G7 Let I be the incenter of $\triangle A B C$ and let H_{a}, H_{b}, and H_{c} be the orthocenters of $\triangle B I C, \triangle C I A$, and $\triangle A I B$, respectively. The lines $H_{a} H_{b}$ meets $A B$ at X and the line $H_{a} H_{c}$ meets $A C$ at Y. If the midpoint T of the median $A M$ of $\triangle A B C$ lies on $X Y$, prove that the line $H_{a} T$ is perpendicular to $B C$

- Number Theory

N1 N1 Let n be a positive integer, $g(n)$ be the number of positive divisors of n of the form $6 k+1$ and $h(n)$ be the number of positive divisors of n of the form $6 k-1$, where k is a nonnegative integer. Find all positive integers n such that $g(n)$ and $h(n)$ have different parity.

N2 N2 Let p be a prime numbers and $x_{1}, x_{2}, \ldots, x_{n}$ be integers. Show that if

$$
x_{1}^{n}+x_{2}^{n}+\ldots+x_{p}^{n} \equiv 0 \quad(\bmod p)
$$

for all positive integers n then $x_{1} \equiv x_{2} \equiv \ldots \equiv x_{p}(\bmod p)$.
N3 N3 Prove that there exist infinitely many non isosceles triangles with rational side lengths, rational lentghs of altitudes and, perimeter equal to 3 .

N4 A special number is a positive integer n for which there exists positive integers a, b, c, and d with

$$
n=\frac{a^{3}+2 b^{3}}{c^{3}+2 d^{3}} .
$$

Prove that
i) there are infinitely many special numbers;
ii) 2014 is not a special number.

Romania

N5 N5Let a, b, c, p, q, r be positive integers such that $a^{p}+b^{q}+c^{r}=a^{q}+b^{r}+c^{p}=a^{r}+b^{p}+c^{q}$. Prove that $a=b=c$ or $p=q=r$.

N6 Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function from the positive integers to the positive integers for which $f(1)=1, f(2 n)=f(n)$ and $f(2 n+1)=f(n)+f(n+1)$ for all $n \in \mathbb{N}$. Prove that for any natural number n, the number of odd natural numbers m such that $f(m)=n$ is equal to the number of positive integers not greater than n having no common prime factors with n.

