Art of Problem Solving

AoPS Community

Balkan MO Shortlist 2016

www.artofproblemsolving.com/community/c914509 by parmenides51, Eray, mihaig, Lamp909, ThE-dArK-IOrD

- Algebra

A1 Let a, b, c be positive real numbers.
Prove that $\sqrt{a^{3} b+a^{3} c}+\sqrt{b^{3} c+b^{3} a}+\sqrt{c^{3} a+c^{3} b} \geq \frac{4}{3}(a b+b c+c a)$
A2 For all $x, y, z>0$ satisfying $\frac{x}{y z}+\frac{y}{z x}+\frac{z}{x y} \leq x+y+z$, prove that

$$
\frac{1}{x^{2}+y+z}+\frac{1}{y^{2}+z+x}+\frac{1}{z^{2}+x+y} \leq 1
$$

A3 Find all injective functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for every real number x and every positive integer n,

$$
\left|\sum_{i=1}^{n} i(f(x+i+1)-f(f(x+i)))\right|<2016
$$

(Macedonia)

A4 The positive real numbers a, b, c satisfy the equality $a+b+c=1$. For every natural number n find the minimal possible value of the expression

$$
E=\frac{a^{-n}+b}{1-a}+\frac{b^{-n}+c}{1-b}+\frac{c^{-n}+a}{1-c}
$$

A5 Let a, b, c and d be real numbers such that $a+b+c+d=2$ and $a b+b c+c d+d a+a c+b d=0$. Find the minimum value and the maximum value of the product $a b c d$.

A6 Prove that there is no function from positive real numbers to itself, $f:(0,+\infty) \rightarrow(0,+\infty)$ such that: $f(f(x)+y)=f(x)+3 x+y f(y)$, for every $x, y \in(0,+\infty)$
by Greece, Athanasios Kontogeorgis (aka socrates)
A7 Find all integers $n \geq 2$ for which there exist the real numbers $a_{k}, 1 \leq k \leq n$, which are satisfying the following conditions:

$$
\sum_{k=1}^{n} a_{k}=0, \sum_{k=1}^{n} a_{k}^{2}=1 \text { and } \sqrt{n} \cdot\left(\sum_{k=1}^{n} a_{k}^{3}\right)=2(b \sqrt{n}-1), \text { where } b=\max _{1 \leq k \leq n}\left\{a_{k}\right\} .
$$

AoPS Community

A8 Find all functions $f: Z \rightarrow Z$ for which $f(g(n))-g(f(n))$ is independent on n for any $g: Z \rightarrow Z$.

- Combinatorics

C1 Let positive integers K and d be given. Prove that there exists a positive integer n and a sequence of K positive integers $b_{1}, b_{2}, \ldots, b_{K}$ such that the number n is a d-digit palindrome in all number bases $b_{1}, b_{2}, \ldots, b_{K}$.

C2 There are 2016 costumers who entered a shop on a particular day. Every customer entered the shop exactly once. (i.e. the customer entered the shop, stayed there for some time and then left the shop without returning back.)
Find the maximal k such that the following holds:
There are k customers such that either all of them were in the shop at a speci c time instance or no two of them were both in the shop at any time instance.

C3 The plane is divided into squares by two sets of parallel lines, forming an infinite grid. Each unit square is coloured with one of 1201 colours so that no rectangle with perimeter 100 contains two squares of the same colour. Show that no rectangle of size 1×1201 or 1201×1 contains two squares of the same colour.
Note: Any rectangle is assumed here to have sides contained in the lines of the grid.
(Bulgaria - Nikolay Beluhov)

- Geometry

G1 Let $A B C D$ be a quadrilateral ,circumscribed about a circle. Let M be a point on the side $A B$. Let I_{1}, I_{2} and I_{3} be the incentres of triangles $A M D, C M D$ and $B M C$ respectively. Prove that $I_{1} I_{2} I_{3} M$ is circumscribed.

G2 Let $A B C D$ be a cyclic quadrilateral with $A B<C D$. The diagonals intersect at the point F and lines $A D$ and $B C$ intersect at the point E. Let K and L be the orthogonal projections of F onto lines $A D$ and $B C$ respectively, and let M, S and T be the midpoints of $E F, C F$ and $D F$ respectively. Prove that the second intersection point of the circumcircles of triangles MKT and $M L S$ lies on the segment $C D$.
(Greece - Silouanos Brazitikos)
G3 Given that $A B C$ is a triangle where $A B<A C$. On the half-lines $B A$ and $C A$ we take points F and E respectively such that $B F=C E=B C$. Let M, N and H be the mid-points of the segments $B F, C E$ and $B C$ respectively and K and O be the circumcenters of the triangles $A B C$ and $M N H$ respectively. We assume that $O K$ cuts $B E$ and $H N$ at the points A_{1} and B_{1} respectively and that C_{1} is the point of intersection of $H N$ and $F E$. If the parallel line from A_{1}
to $O C_{1}$ cuts the line $F E$ at D and the perpendicular from A_{1} to the line $D B_{1}$ cuts $F E$ at the point M_{1}, prove that E is the orthocenter of the triangle $A_{1} O M_{1}$.

- Number Theory

N1 Find all natural numbers n for which $1^{\phi(n)}+2^{\phi(n)}+\ldots+n^{\phi(n)}$ is coprime with n.
N2 Find all odd natural numbers n such that $d(n)$ is the largest divisor of the number n different from n.
($d(n)$ is the number of divisors of the number \mathbf{n} including 1 and n).
N3 Find all the integer solutions (x, y, z) of the equation $(x+y+z)^{5}=80 x y z\left(x^{2}+y^{2}+z^{2}\right)$,
N4 Find all monic polynomials f with integer coefficients satisfying the following condition: there exists a positive integer N such that p divides $2(f(p)!)+1$ for every prime $p>N$ for which $f(p)$ is a positive integer.

Note: A monic polynomial has a leading coefficient equal to 1.
(Greece - Panagiotis Lolas and Silouanos Brazitikos)
N5 A positive integer is called downhill if the digits in its decimal representation form a nonstrictly decreasing sequence from left to right. Suppose that a polynomial $P(x)$ with rational coefficients takes on an integer value for each downhill positive integer x. Is it necessarily true that $P(x)$ takes on an integer value for each integer x ?

