AoPS Community

South East Mathematical Olympiad 2019

www.artofproblemsolving.com/community/c915034
by Henry_2001, MarkBcc168, mofumofu, YRNG-BCC168

- \quad Grade 10

Day 1 July 30th
1 Find the largest real number k, such that for any positive real numbers a, b,

$$
(a+b)(a b+1)(b+1) \geq k a b^{2}
$$

2 Two circles Γ_{1} and Γ_{2} intersect at A, B. Points C, D lie on Γ_{1}, points E, F lie on Γ_{2} such that A, B lies on segments $C E, D F$ respectively and segments $C E, D F$ do not intersect. Let $C F$ meet Γ_{1}, Γ_{2} again at K, L respectively, and $D E$ meet Γ_{1}, Γ_{2} at M, N respectively. If the circumcircles of $\triangle A L M$ and $\triangle B K N$ are tangent, prove that the radii of these two circles are equal.
$3 \quad$ Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function such that $f(a b)$ divides $\max \{f(a), b\}$ for any positive integers a, b. Must there exist infinitely many positive integers k such that $f(k)=1$?

4 As the figure is shown, place a 2×5 grid table in horizontal or vertical direction, and then remove arbitrary one 1×1 square on its four corners. The eight different shapes consisting of the remaining nine small squares are called banners.

Here is a fixed 9×18 grid table. Find the number of ways to cover the grid table completely with 18 banners.

Day 2 July 31st
5 Let $S=\{1928,1929,1930, \cdots, 1949\}$. We call one of S s subset M is a red subset, if the sum of any two different elements of M isnt divided by 4 . Let x, y be the number of the red subsets of S with 4 and 5 elements,respectively. Determine which of x, y is greater and prove that.

6 Let a, b, c be the lengths of the sides of a given triangle.If positive reals x, y, z satisfy $x+y+z=$ 1 , find the maximum of $a x y+b y z+c z x$.

7 Let $A B C D$ be a given convex quadrilateral in a plane. Prove that there exist a line with four different points P, Q, R, S on it and a square $A B C D$ such that P lies on both line $A B$ and $A B$, Q lies on both line $B C$ and $B C, R$ lies on both line $C D$ and $C D, S$ lies on both line $D A$ and $D A$.

8 For positive integer $x>1$, define set S_{x} as

$$
S_{x}=\left\{p^{\alpha} \mid p \text { is one of the prime divisor of } x, \alpha \in \mathbb{N}, p^{\alpha} \mid x, \alpha \equiv v_{p}(x)(\bmod 2)\right\}
$$

where $v_{p}(n)$ is the power of prime divisor p in positive integer n. Let $f(x)$ be the sum of all the elements of S_{x} when $x>1$, and $f(1)=1$.
Let m be a given positive integer, and the sequence $a_{1}, a_{2}, \cdots, a_{n}, \cdots$ satisfy that for any positive integer $n>m, a_{n+1}=\max \left\{f\left(a_{n}\right), f\left(a_{n-1}+1\right), \cdots, f\left(a_{n-m}+m\right)\right\}$. Prove that
(1)there exists constant $A, B(0<A<1)$, such that when positive integer x has at least two different prime divisors, $f(x)<A x+B$ holds;
(2)there exists positive integer Q, such that for any positive integer $n, a_{n}<Q$.

- \quad Grade 11

Day 1 July 30th

1 Let $[a]$ represent the largest integer less than or equal to a, for any real number a. Let $\{a\}=$ $a-[a]$.
Are there positive integers m, n and $n+1$ real numbers $x_{0}, x_{1}, \ldots, x_{n}$ such that $x_{0}=428$, $x_{n}=1928, \frac{x_{k+1}}{10}=\left[\frac{x_{k}}{10}\right]+m+\left\{\frac{x_{k}}{5}\right\}$ holds?
Justify your answer.
$2 A B C D$ is a parallelogram with $\angle B A D \neq 90$. Circle centered at A radius $B A$ denoted as ω_{1} intersects the extended side of $A B, C B$ at points E, F respectively. Suppose the circle centered at D with radius $D A$, denoted as ω_{2}, intersects $A D, C D$ at points M, N respectively. Suppose $E N, F M$ intersects at $G, A G$ intersects $M E$ at point T. $M F$ intersects ω_{1} at $Q \neq F$, and $E N$ intersects ω_{2} at $P \neq N$. Prove that G, P, T, Q concyclic.
$3 n$ symbols line up in a row, numbered as $1,2, \ldots, n$ from left to right. Delete every symbol with squared numbers. Renumber the rest from left to right. Repeat the process until all n symbols are deleted. Let $f(n)$ be the initial number of the last symbol deleted. Find $f(n)$ in terms of n and find $f(2019)$.

4 Let X be a 5×5 matrix with each entry be 0 or 1 . Let $x_{i, j}$ be the (i, j)-th entry of $X(i, j=$ $1,2, \ldots, 5)$. Consider all the 24 ordered sequence in the rows, columns and diagonals of X in the following:

$$
\begin{aligned}
& \left(x_{i, 1}, x_{i, 2}, \ldots, x_{i, 5}\right),\left(x_{i, 5}, x_{i, 4}, \ldots, x_{i, 1}\right),(i=1,2, \ldots, 5) \\
& \left(x_{1, j}, x_{2, j}, \ldots, x_{5, j}\right),\left(x_{5, j}, x_{4, j}, \ldots, x_{1, j}\right),(j=1,2, \ldots, 5) \\
& \left(x_{1,1}, x_{2,2}, \ldots, x_{5,5}\right),\left(x_{5,5}, x_{4,4}, \ldots, x_{1,1}\right) \\
& \left(x_{1,5}, x_{2,4}, \ldots, x_{5,1}\right),\left(x_{5,1}, x_{4,2}, \ldots, x_{1,5}\right)
\end{aligned}
$$

Suppose that all of the sequences are different. Find all the possible values of the sum of all entries in X.

Day 2 July 31st

5 For positive integer n, define a_{n} as the number of the triangles with integer length of every side and the length of the longest side being $2 n$.
(1) Find a_{n} in terms of n;
(2)If the sequence $\left\{b_{n}\right\}$ satisfying for any positive integer $n, \sum_{k=1}^{n}(-1)^{n-k}\binom{n}{k} b_{k}=a_{n}$. Find the number of positive integer n satisfying that $b_{n} \leq 2019 a_{n}$.

6 In $\triangle A B C, A B>A C$, the bisectors of $\angle A B C, \angle A C B$ meet sides $A C, A B$ at D, E respectively. The tangent at A to the circumcircle of $\triangle A B C$ intersects $E D$ extended at P. Suppose that $A P=B C$. Prove that $B D \| C P$.

7 Amy and Bob choose numbers from $0,1,2, \cdots, 81$ in turn and Amy choose the number first. Every time the one who choose number chooses one number from the remaining numbers. When all 82 numbers are chosen, let A be the sum of all the numbers Amy chooses, and let B be the sum of all the numbers Bob chooses. During the process, Amy tries to make gcd (A, B) as great as possible, and Bob tries to make $\operatorname{gcd}(A, B)$ as little as possible. Suppose Amy and Bob take the best strategy of each one, respectively, determine $\operatorname{gcd}(A, B)$ when all 82 numbers are chosen.

8 For positive integer $x>1$, define set S_{x} as

$$
S_{x}=\left\{p^{\alpha} \mid p \text { is one of the prime divisor of } x, \alpha \in \mathbb{N}, p^{\alpha} \mid x, \alpha \equiv v_{p}(x)(\bmod 2)\right\},
$$

where $v_{p}(n)$ is the power of prime divisor p in positive integer n. Let $f(x)$ be the sum of all the elements of S_{x} when $x>1$, and $f(1)=1$.

Let m be a given positive integer, and the sequence $a_{1}, a_{2}, \cdots, a_{n}, \cdots$ satisfy that for any positive integer $n>m, a_{n+1}=\max \left\{f\left(a_{n}\right), f\left(a_{n-1}+1\right), \cdots, f\left(a_{n-m}+m\right)\right\}$. Prove that (1)there exists constant $A, B(0<A<1)$, such that when positive integer x has at least two different prime divisors, $f(x)<A x+B$ holds;
(2)there exists positive integer N, l, such that for any positive integer $n \geq N, a_{n+l}=a_{n}$ holds.

