Art of Problem Solving

AoPS Community

Moscow Mathematical Olympiad 1953

www.artofproblemsolving.com/community/c918097
by parmenides51

- tour 1

233 Prove that the sum of angles at the longer base of a trapezoid is less than the sum of angles at the shorter base.

234 Find the smallest number of the form $1 \ldots 1$ in its decimal expression which is divisible by $\underbrace{3 \ldots 3}$.

235 Divide a segment in halves using a right triangle.
(With a right triangle one can draw straight lines and erect perpendiculars but cannot draw perpendiculars.)

236 Prove that $n^{2}+8 n+15$ is not divisible by $n+4$ for any positive integer n.
237 Three circles are pair-wise tangent to each other.
Prove that the circle passing through the three tangent points is perpendicular to each of the initial three circles.

238 Prove that if in the following fraction we have n radicals in the numerator and $n-1$ in the denominator, then $\frac{2-\sqrt{2+\sqrt{2+\ldots+\sqrt{2}}}}{2-\sqrt{2+\sqrt{2+\ldots+\sqrt{2}}}}>\frac{1}{4}$

239 On the plane find the locus of points whose coordinates satisfy $\sin (x+y)=0$.
240 Let $A B$ and $A_{1} B_{1}$ be two skew segments, O and O_{1} their respective midpoints. Prove that $O O_{1}$ is shorter than a half sum of $A A_{1}$ and $B B_{1}$.

241 Prove that the polynomial $x^{200} y^{200}+1$ cannot be represented in the form $f(x) g(y)$, where f and g are polynomials of only x and y, respectively.

242 Let A be a vertex of a regular star-shaped pentagon, the angle at A being less than 180° and the broken line $A A_{1} B B_{1} C C_{1} D D_{1} E E_{1}$ being its contour. Lines $A B$ and $D E$ meet at F. Prove that polygon $A B B_{1} C C_{1} D E D_{1}$ has the same area as the quadrilateral $A D_{1} E F$.

243 Given a right circular cone and a point A. Find the set of vertices of cones equal to the given one, with axes parallel to that of the given one, and with A inside them.

AoPS Community

- tour 2

244 Prove that $\operatorname{gcd}(a+b, l c m(a, b))=\operatorname{gcd}(a, b)$ for any a, b.
245 A quadrilateral is circumscribed around a circle. Its diagonals intersect at the center of the circle. Prove that the quadrilateral is a rhombus.

246 a) On a plane, 11 gears are arranged so that the teeth of the first gear mesh with the teeth of the second gear, the teeth of the second gear with those of the third gear, etc., and the teeth of the last gear mesh with those of the first gear. Can the gears rotate?
b) On a plane, n gears are arranged so that the teeth of the first gear mesh with the teeth of the second gear, the teeth of the second gear with those of the third gear, etc., and the teeth of the last gear mesh with those of the first gear. Can the gears rotate?

247 Inside a convex 1000-gon, 500 points are selected so that no three of the 1500 points - the ones selected and the vertices of the polygon - lie on the same straight line. This 1000 -gon is then divided into triangles so that all 1500 points are vertices of the triangles, and so that these triangles have no other vertices.
How many triangles will there be?

248 a) Solve the system

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
x_{1}+2 x_{2}+2 x_{3}+2 x_{4}+2 x_{5}=1 \\
x_{1}+3 x_{2}+4 x_{3}+4 x_{4}+4 x_{5}=2 \\
x_{1}+3 x_{2}+5 x_{3}+6 x_{4}+6 x_{5}=3
\end{array}\right. \\
x_{1}+3 x_{2}+5 x_{3}+7 x_{4}+8 x_{5}=4 \\
x_{1}+3 x_{2}+5 x_{3}+7 x_{4}+9 x_{5}=5
\end{array}\right\}\left\{\begin{array}{l}
x_{1}+2 x_{2}+2 x_{3}+2 x_{4}+2 x_{5}+\ldots+2 x_{100}=1 \\
x_{1}+3 x_{2}+4 x_{3}+4 x_{4}+4 x_{5}+\ldots+4 x_{100}=2 \\
x_{1}+3 x_{2}+5 x_{3}+6 x_{4}+6 x_{5}+\ldots+6 x_{100}=3 \\
x_{1}+3 x_{2}+5 x_{3}+7 x_{4}+8 x_{5}+\ldots+8 x_{100}=4 \\
\ldots \\
x_{1}+3 x_{2}+5 x_{3}+7 x_{4}+9 x_{5}+\ldots+199 x_{100}=100
\end{array}\right] .
$$

249 Let a, b, c, d be the lengths of consecutive sides of a quadrilateral, and S its area. Prove that $S \leq \frac{(a+b)(c+d)}{4}$

250 Somebody wrote 1953 digits on a circle. The 1953-digit number obtained by reading these figures clockwise, beginning at a certain point, is divisible by 27 . Prove that if one begins reading the figures at any other place, one gets another 1953-digit number also divisible by 27 .

251 On a circle, distinct points A_{1}, \ldots, A_{16} are chosen. Consider all possible convex polygons all of whose vertices are among A_{1}, \ldots, A_{16}. These polygons are divided into 2 groups, the first group comprising all polygons with A_{1} as a vertex, the second group comprising the remaining polygons. Which group is more numerous?

252 Given triangle $\triangle A_{1} A_{2} A_{3}$ and a straight line ℓ outside it. The angles between the lines $A_{1} A_{2}$ and $A_{2} A_{3}, A_{1} A_{2}$ and $A_{2} A_{3}, A_{2} A_{3}$ and $A_{3} A_{1}$ are equal to a_{3}, a_{1} and a_{2}, respectively. The straight lines are drawn through points A_{1}, A_{2}, A_{3} forming with ℓ angles of $\pi-a_{1}, \pi-a_{2}, \pi-a_{3}$, respectively. All angles are counted in the same direction from ℓ. Prove that these new lines meet at one point.

253 Given the equations
(1) $a x^{2}+b x+c=0$
(2) $-a x^{2}+b x+c=0$
prove that if x_{1} and x_{2} are some roots of equations (1) and (2), respectively,
then there is a root x_{3} of the equation $\frac{a}{2} x^{2}+b x+c=0$ such that either $x_{1} \leq x_{3} \leq x_{2}$ or $x_{1} \geq x_{3} \geq x_{2}$.

254 Given a 101×200 sheet of graph paper, we start moving from a corner square in the direction of the square's diagonal (not the sheet's diagonal) to the border of the sheet, then change direction obeying the laws of light's reflection. Will we ever reach a corner square? https://cdn.artofproblemsolving.com/attachments/b/8/4ec2f4583f406feda004c7fb4f11a424c9b9a png

255 Divide a cube into three equal pyramids.
256 Find roots of the equation $1-\frac{x}{1}+\frac{x(x-1)}{2!}-\ldots+\frac{(-1)^{n} x(x-1) \ldots(x-n+1)}{n!}=0$.
257 Let $x_{0}=10^{9}, x_{n}=\frac{x_{n-1}^{2}+2}{2 x_{n-1}}$ for $n>0$. Prove that $0<x_{36}-\sqrt{2}<10^{-9}$.
258 A knight stands on an infinite chess board. Find all places it can reach in exactly $2 n$ moves.

