AoPS Community

1954 Moscow Mathematical Olympiad

Moscow Mathematical Olympiad 1954

www.artofproblemsolving.com/community/c918098
by parmenides51

- tour 1

259 A regular star-shaped hexagon is split into 4 parts. Construct from them a convex polygon.
260 Given two convex polygons, $A_{1} A_{2} \ldots A_{n}$ and $B_{1} B_{2} \ldots B_{n}$ such that $A_{1} A_{2}=B_{1} B_{2}, A_{2} A_{3}=B_{2} B_{3}, \ldots$, $A_{n} A_{1}=B_{n} B_{1}$ and $n-3$ angles of one polygon are equal to the respective angles of the other. Find whether these polygons are equal.

261 Find a four-digit number whose division by two given distinct one-digit numbers goes along the following lines:
https://cdn.artofproblemsolving.com/attachments/2/a/e1d3c68ec52e11ad59de755c3dbdc2cf54a81 png

262 Are there integers m and n such that $m^{2}+1954=n^{2}$?
263 Define the maximal value of the ratio of a three-digit number to the sum of its digits.
264 * Cut out of a 3×3 square an unfolding of the cube with edge 1 .
265 From an arbitrary point O inside a convex n-gon, perpendiculars are drawn on (extensions of the) sides of the n-gon. Along each perpendicular a vector is constructed, starting from O, directed towards the side onto which the perpendicular is drawn, and of length equal to half the length of the corresponding side. Find the sum of these vectors.

266 Find all solutions of the system consisting of 3 equations:
$x\left(1-\frac{1}{2^{n}}\right)+y\left(1-\frac{1}{2^{n+1}}\right)+z\left(1-\frac{1}{2^{n+2}}\right)=0$ for $n=1,2,3$.
267 Prove that if $x_{0}^{4}+a_{1} x_{0}^{3}+a_{2} x_{0}^{2}+a_{3} x_{0}+a_{4}=0$
and $4 x_{0}^{3}+3 a_{1} x_{0}^{2}+2 a_{2} x_{0}+a_{3}=0$,
then $x^{4}+a_{1} x^{3}+a_{2} x^{2}+a_{3} x+a_{4}$ is a mutliple of $\left(x-x_{0}\right)^{2}$.
268 Delete 100 digits from the number 1234567891011... 9899100 so that the remaining number were as big as possible.

AoPS Community

a) Given 100 numbers a_{1}, \ldots, a_{100} such that $\left\{\begin{array}{l}a_{1}-3 a_{2}+2 a_{3} \geq 0, \\ a_{2}-3 a_{3}+2 a_{4} \geq 0, \\ a_{3}-3 a_{4}+2 a_{5} \geq 0, \\ \ldots \\ a_{99}-3 a_{100}+2 a_{1} \geq 0, \\ a_{100}-3 a_{1}+2 a_{2} \geq 0\end{array}\right.$ prove that the numbers are equal.
b) Given numbers $a_{1}=1, \ldots, a_{100}$ such that $\left\{\begin{array}{l}a_{1}-4 a_{2}+3 a_{3} \geq 0, \\ a_{2}-4 a_{3}+3 a_{4} \geq 0, \\ a_{3}-4 a_{4}+3 a_{5} \geq 0, \\ \ldots \\ a_{99}-4 a_{100}+3 a_{1} \geq 0, \\ a_{100}-4 a_{1}+3 a_{2} \geq 0\end{array}\right.$

Find $a_{2}, a_{3}, \ldots, a_{100}$.
270 Consider $\triangle A B C$ and a point S inside it. Let A_{1}, B_{1}, C_{1} be the intersection points of $A S, B S, C S$ with $B C, A C, A B$, respectively. Prove that at least in one of the resulting quadrilaterals $A B_{1} S C_{1}, C_{1} S A_{1} B, A$ both angles at either C_{1} and B_{1}, or C_{1} and A_{1}, or A_{1} and B_{1} are not acute.

271 Do there exist points A, B, C, D in space, such that $A B=C D=8, A C=B D=10$, and $A D=B C=13$?

272 Find all real solutions of the equation $x^{2}+2 x \sin (x y)+1=0$.

- tour 2

273 Given a piece of graph paper with a letter assigned to each vertex of every square such that on every segment connecting two vertices that have the same letter and are on the same line of the mesh, there is at least one vertex with another letter. What is the least number of distinct letters needed to plot such a picture?

274
Solve the system $\left\{\begin{array}{l}10 x_{1}+3 x_{2}+4 x_{3}+x_{4}+x_{5}=0 \\ 11 x_{2}+2 x_{3}+2 x_{4}+3 x_{5}+x_{6}=0 \\ 15 x_{3}+4 x_{4}+5 x_{5}+4 x_{6}+x_{7}=0 \\ 2 x_{1}+x_{2}-3 x_{3}+12 x_{4}-3 x_{5}+x_{6}+x_{7}=0 \\ 6 x_{1}-5 x_{2}+3 x_{3}-x_{4}+17 x_{5}+x_{6}=0 \\ 3 x_{1}+2 x_{2}-3 x_{3}+4 x_{4}+x_{5}-16 x_{6}+2 x_{7}=0 \\ 4 x_{1}-8 x_{2}+x_{3}+x_{4}+3 x_{5}+19 x_{7}=0\end{array}\right.$

AoPS Community

1954 Moscow Mathematical Olympiad

275 How many axes of symmetry can a heptagon have?
276 a) Let $1,2,3,5,6,7,10, . ., N$ be all the divisors of $N=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31$ (the product of primes 2 to 31) written in increasing order. Below this series of divisors, write the following series of 1 's or -1 's: write 1 below any number that factors into an even number of prime factors and below a 1 , write -1 below the remaining numbers.
Prove that the sum of the series of 1 's and -1 's is equal to 0 .
b) Let $1,2,3,5,6,7,10, . ., N$ be all the divisors of $N=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 37$ (the product of primes 2 to 37) written in increasing order. Below this series of divisors, write the following series of 1's or -1 's: write 1 below any number that factors into an even number of prime factors and below a 1 , write -1 below the remaining numbers.
Prove that the sum of the series of 1 's and -1 's is equal to 0 .
277 The map of a town shows a plane divided into equal equilateral triangles. The sides of these triangles are streets and their vertices are intersections; 6 streets meet at each junction. Two cars start simultaneously in the same direction and at the same speed from points A and B situated on the same street (the same side of a triangle). After any intersection an admissible route for each car is either to proceed in its initial direction or turn through 120° to the right or to the left. Can these cars meet? (Either prove that these cars won't meet or describe a route by which they will meet.) https://cdn.artofproblemsolving.com/attachments/2/d/2c934bcd0c7fc3d9dca9cee0b6f015076abbc png

278 A 17×17 square is cut out of a sheet of graph paper. Each cell of this square has one of thenumbers from 1 to 70 . Prove that there are 4 distinct squares whose centers A, B, C, D are the vertices of a parallelogramsuch that $A B / / C D$, moreover, the sum of the numbers in the squares with centers A and C is equal to that in the squares with centers B and D.

279 Given four straight lines, $m_{1}, m_{2}, m_{3}, m_{4}$, intersecting at O and numbered clockwise with O as the center of the clock, we draw a line through an arbitrary point A_{1} on m_{1} parallel to m_{4} until the line meets m_{2} at A_{2}. We draw a line through A_{2} parallel to m_{1} until it meets m_{3} at A_{3}. We also draw a line through A_{3} parallel to m_{2} until it meets m_{4} at A_{4}. Now, we draw a line through A_{4} parallel to m_{3} until it meets m_{1} at B. Prove that
a) $O B<\frac{O A_{1}}{2}$.
b) $O B \leq \frac{O A_{1}}{4}$.
https://cdn.artofproblemsolving.com/attachments/5/f/5ea08453605e02e7e1253fd7c74065a9ffbd\& png

280 Rays l_{1} and l_{2} pass through a point O. Segments $O A_{1}$ and $O B_{1}$ on l_{1}, and $O A_{2}$ and $O B_{2}$ on l_{2}, are drawn so that $\frac{O A_{1}}{O A_{2}} \neq \frac{O B_{1}}{O B_{2}}$. Find the set of all intersection points of lines $A_{1} A_{2}$ and $B_{1} B_{2}$ as l_{2} rotates around O while l_{1} is fixed.

281 *. Positive numbers $x_{1}, x_{2}, \ldots, x_{100}$ satisfy the system $\left\{\begin{array}{l}x_{1}^{2}+x_{2}^{2}+\ldots+x_{100}^{2}>10000 \\ x_{1}+x_{2}+\ldots+x_{100}<300\end{array}\right.$
Prove that among these numbers there are three whose sum is greater than 100.
282 Given a sequence of numbers $a_{1}, a_{2}, \ldots, a_{15}$, one can always construct a new sequence $b_{1}, b_{2}, \ldots, b_{15}$, where b_{i} is equal to the number of terms in the sequence $\left\{a_{k}\right\}_{k=1}^{15}$ less than $a_{i}(i=1,2, \ldots, 15)$. Is there a sequence $\left\{a_{k}\right\}_{k=1}^{15}$ for which the sequence $\left\{b_{k}\right\}_{k=1}^{15}$ is $1,0,3,6,9,4,7,2,5,8,8,5,10,13,13$?

283 Consider five segments $A B_{1}, A B_{2}, A B_{3}, A B_{4}, A B_{5}$. From each point B_{i} there can exit either 5 segments or no segments at all, so that the endpoints of any two segments of the resulting graph (system of segments) do not coincide. Can the number of free endpoints of the segments thus constructed be equal to 1001? (A free endpoint is an endpoint from which no segment begins.)

284 How many planes of symmetry can a triangular pyramid have?
285 The absolute values of all roots of the quadratic equation $x^{2}+A x+B=0$ and $x^{2}+C x+D=0$ are less then 1 . Prove that so are absolute values of the roots of the quadratic equation $x^{2}+$ $\frac{A+C}{2} x+\frac{B+D}{2}=0$.

286 Consider the set of all 10-digit numbers expressible with the help of figures 1 and 2 only. Divide it into two subsets so that the sum of any two numbers of the same subset is a number which is written with not less than two 3's.

