AoPS Community

2018 Israel National Olympiad

www.artofproblemsolving.com/community/c919190
by Cuubic
$1 \quad n$ people sit in a circle. Each of them is either a liar (always lies) or a truthteller (always tells the truth). Every person knows exactly who speaks the truth and who lies. In their turn, each person says 'the person two seats to my left is a truthteller'. It is known that there's at least one liar and at least one truthteller in the circle.

- Is it possible that $n=2017$?
- Is it possible that $n=5778$?

2 An arithmetic sequence is an infinite sequence of the form $a_{n}=a_{0}+n \cdot d$ with $d \neq 0$.
A geometric sequence is an infinite sequence of the form $b_{n}=b_{0} \cdot q^{n}$ where $q \neq 1,0,-1$.

- Does every arithmetic sequence of integers have an infinite subsequence which is geometric?
- Does every arithmetic sequence of real numbers have an infinite subsequence which is geometric?

3 Determine the minimal and maximal values the expression $\frac{|a+b|+|b+c|+|c+a|}{|a|+|b|+|c|}$ can take, where a, b, c are real numbers.

4 The three-digit number 999 has a special property: It is divisible by 27 , and its digit sum is also divisible by 27 . The four-digit number 5778 also has this property, as it is divisible by 27 and its digit sum is also divisible by 27 . How many four-digit numbers have this property?

5 The sequence a_{n} is defined for any $n \geq 10$ by the following inductive rule:

- $a_{10}=5778$
- If $a_{n}=0$ then $a_{n+1}=0$.
- If $a_{n} \neq 0$ then a_{n+1} is the number whose base- $(n+1)$ representation equals the base n representation of the number $a_{n}-1$.
For example, $a_{11}=5 \cdot 11^{3}+7 \cdot 11^{2}+7 \cdot 11^{1}+7 \cdot 11^{0}=7586 a_{12}=5 \cdot 12^{3}+7 \cdot 12^{2}+7 \cdot 12^{1}+6 \cdot 12^{0}=9738$
- Does there exist $n \geq 10$ for which $a_{n}=0$?
- Is $a_{1,000,000}=0$?
- Is $a_{100^{100^{100}}}=0$?

6 In the corners of triangle $A B C$ there are three circles with the same radius. Each of them is tangent to two of the triangle's sides. The vertices of triangle $M N K$ lie on different sides of triangle $A B C$, and each edge of $M N K$ is also tangent to one of the three circles. Likewise, the vertices of triangle $P Q R$ lie on different sides of triangle $A B C$, and each edge of $P Q R$ is also tangent to one of the three circles (see picture below). Prove that triangles $M N K, P Q R$ have the same inradius.

```
https://i.imgur.com/bYuBabS.png
```

7 A uniform covering of the integers $1,2, \ldots, n$ is a finite multiset of subsets of $\{1,2, \ldots, n\}$, so that each number lies in the same amount of sets from the covering. A covering may contain the same subset multiple times, it must contain at least one subset, and it may contain the empty subset. For example, ($\{1\},\{1\},\{2,3\},\{3,4\},\{2,4\}$) is a uniform covering of $1,2,3,4$ (every number occurs in two sets). The covering containing only the empty set is also uniform (every number occurs in zero sets).

Given two uniform coverings, we define a new uniform covering, their sum (denoted by \oplus), by adding the sets from both coverings. For example:
$(\{1\},\{1\},\{2,3\},\{3,4\},\{2,4\}) \oplus(\{1\},\{2\},\{3\},\{4\})=(\{1\},\{1\},\{1\},\{2\},\{3\},\{4\},\{2,3\},\{3,4\},\{2,4\})$
A uniform covering is called non-composite if it's not a sum of two uniform coverings.
Prove that for any $n \geq 1$, there are only finitely many non-composite uniform coverings of $1,2, \ldots, n$.

