AoPS Community

2016 Israel National Olympiad

www.artofproblemsolving.com/community/c919192
by Cuubic

1 Nina and Meir are walking on a 3 km path towards grandma's house. They start walking at the same time from the same point. Meir's speed is $4 \mathrm{~km} / \mathrm{h}$ and Nina's speed is $3 \mathrm{~km} / \mathrm{h}$.

Along the path there are several benches. Whenever Nina or Meir reaches a bench, they sit on it for some time and eat a cookie. Nina always takes t minutes to eat a cookie, and Meir always takes $2 t$ minutes to eat a cookie, where t is a positive integer.

It turns out that Nina and Meir reached grandma's house at the same time. How many benches were there? Find all of the options.

2 We are given a cone with height 6 , whose base is a circle with radius $\sqrt{2}$. Inside the cone, there is an inscribed cube: Its bottom face on the base of the cone, and all of its top vertices lie on the cone. What is the length of the cube's edge?
https://i.imgur.com/AHqHHP6.png
3 Denote by $S(n)$ the sum of digits of n. Given a positive integer N, we consider the following process: We take the sum of digits $S(N)$, then take its sum of digits $S(S(N)$), then its sum of digits $S(S(S(N))$)... We continue this until we are left with a one-digit number.

We call the number of times we had to activate $S(\cdot)$ the depth of N.
For example, the depth of 49 is 2 , since $S(49)=13 \rightarrow S(13)=4$, and the depth of 45 is 1 , since $S(45)=9$.

- Prove that every positive integer N has a finite depth, that is, at some point of the process we get a one-digit number.
- Define $x(n)$ to be the minimal positive integer with depth n. Find the residue of $x(5776) \bmod 6$.
- Find the residue of $x(5776)-x(5708) \bmod 2016$.

4 In the beginning, there is a circle with three points on it. The points are colored (clockwise): Green, blue, red. Jonathan may perform the following actions, as many times as he wants, in any order:

- Choose two adjacent points with different colors, and add a point between them with one of the two colors only.
- Choose two adjacent points with the same color, and add a point between them with any of the three colors.
- Choose three adjacent points, at least two of them having the same color, and delete the middle point.

Can Jonathan reach a state where only three points remain on the circle, colored (clockwise): Blue, green, red?
$5 \quad$ The Fibonacci sequence F_{n} is defined by $F_{1}=F_{2}=1$ and the recurrence relation $F_{n}=F_{n-1}+$ F_{n-2} for all integers $n \geq 3$.
Let $m, n \geq 1$ be integers. Find the minimal degree d for which there exists a polynomial $f(x)=$ $a_{d} x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}$, which satisfies $f(k)=F_{m+k}$ for all $k=0,1, \ldots, n$.

6 Points $A_{1}, A_{2}, A_{3}, \ldots, A_{12}$ are the vertices of a regular polygon in that order. The 12 diagonals $A_{1} A_{6}, A_{2} A_{7}, A_{3} A_{8}, \ldots, A_{11} A_{4}, A_{12} A_{5}$ are marked, as in the picture below. Let X be some point in the plane. From X, we draw perpendicular lines to all 12 marked diagonals. Let $B_{1}, B_{2}, B_{3}, \ldots, B_{12}$ be the feet of the perpendiculars, so that B_{1} lies on $A_{1} A_{6}, B_{2}$ lies on $A_{2} A_{7}$ and so on.
Evaluate the ratio $\frac{X A_{1}+X A_{2}+\cdots+X A_{12}}{B_{1} B_{6}+B_{2} B_{7}+\cdots+B_{12} B_{5}}$. https://i.imgur.com/DUuwFth.png
$7 \quad$ Find all functions $f: \mathbb{Z} \rightarrow \mathbb{C}$ such that $f(x(2 y+1))=f(x(y+1))+f(x) f(y)$ holds for any two integers x, y.

