## AoPS Community

## 2015 Israel National Olympiad

www.artofproblemsolving.com/community/c919194
by Cuubic

1

- Find an example of three positive integers $a, b, c$ satisfying $31 a+30 b+28 c=365$.
- Prove that any triplet $a, b, c$ satisfying the above condition, also satisfies $a+b+c=12$.

2 A triangle is given whose altitudes' lengths are $\frac{1}{5}, \frac{1}{5}, \frac{1}{8}$. Evaluate the triangle's area.
3 Prove that the number $\left(\frac{76}{\sqrt[3]{\sqrt[3]{77}-\sqrt[3]{75}}-\sqrt[3]{5775}}+\frac{1}{\sqrt[3]{77}+\sqrt[3]{75}}+\sqrt[3]{5775}\right)^{3}$ is an integer.
4 Let $k, m, n$ be positive integers such that $n^{m}$ is divisible by $m^{n}$, and $m^{k}$ is divisible by $k^{m}$.

- Prove that $n^{k}$ is divisible by $k^{n}$.
- Find an example of $k, m, n$ satisfying the above conditions, where all three numbers are distinct and bigger than 1.

5 Let $A B C D$ be a tetrahedron. Denote by $S_{1}$ the inscribed sphere inside it, which is tangent to all four faces. Denote by $S_{2}$ the outer escribed sphere outside $A B C$, tangent to face $A B C$ and to the planes containing faces $A B D, A C D, B C D$. Let $K$ be the tangency point of $S_{1}$ to the face $A B C$, and let $L$ be the tangency point of $S_{2}$ to the face $A B C$. Let $T$ be the foot of the perpendicular from $D$ to the face $A B C$.

Prove that $L, T, K$ lie on one line.
6 Let $n \geq 1$ be a positive integer. $n$ lamps are placed in a line. At minute 0 , some lamps are on (maybe all of them). Every minute the state of the lamps changes: A lamp is on at minute $t+1$ if and only if at minute $t$, exactly one of its neighbors is on (the two lamps at the ends have one neighbor each, all other lamps have two neighbors).
For which values of $n$ can we guarantee that all lamps will be off after some time?
7 The Fibonacci sequence $F_{n}$ is defined by $F_{0}=0, F_{1}=1$ and the recurrence relation $F_{n}=$ $F_{n-1}+F_{n-2}$ for all integers $n \geq 2$. Let $p \geq 3$ be a prime number.

- Prove that $F_{p-1}+F_{p+1}-1$ is divisible by $p$.
- Prove that $F_{p^{k+1}-1}+F_{p^{k+1}+1}-\left(F_{p^{k}-1}+F_{p^{k}+1}\right)$ is divisible by $p^{k+1}$ for any positive integer $k$.

