Art of Problem Solving

AoPS Community

2014 Israel National Olympiad

www.artofproblemsolving.com/community/c919195
by Cuubic

1 Consider the number $\left(101^{2}-100^{2}\right) \cdot\left(102^{2}-101^{2}\right) \cdot\left(103^{2}-102^{2}\right) \cdot \ldots \cdot\left(200^{2}-199^{2}\right)$.

- Determine its units digit.
- Determine its tens digit.

2 Let $\Delta A_{1} A_{2} A_{3}, \Delta B_{1} B_{2} B_{3}, \Delta C_{1} C_{2} C_{3}$ be three equilateral triangles. The vertices in each triangle are numbered clockwise. It is given that $A_{3}=B_{3}=C_{3}$. Let M be the center of mass of $\Delta A_{1} B_{1} C_{1}$, and let N be the center of mass of $\Delta A_{2} B_{2} C_{2}$.

Prove that $\Delta A_{3} M N$ is an equilateral triangle.
3 Let $A B C D E F$ be a convex hexagon. In the hexagon there is a point K, such that $A B C K, D E F K$ are both parallelograms. Prove that the three lines connecting A, B, C to the midpoints of segments $C E, D F, E A$ meet at one point.

4 We are given a row of $n \geq 7$ tiles. In the leftmost 3 tiles, there is a white piece each, and in the rightmost 3 tiles, there is a black piece each. The white and black players play in turns (the white starts). In each move, a player may take a piece of their color, and move it to an adjacent tile, so long as it's not occupied by a piece of the same color. If the new tile is empty, nothing happens. If the tile is occupied by a piece of the opposite color, both pieces are destroyed (both white and black). The player who destroys the last two pieces wins the game.

Which player has a winning strategy, and what is it? (The answer may depend on n)
$5 \quad$ Let p be a polynomial with integer coefficients satisfying $p(16)=36, p(14)=16, p(5)=25$. Determine all possible values of $p(10)$.

6 Let n be a positive integer. Find the maximal real number k, such that the following holds:
For any n real numbers $x_{1}, x_{2}, \ldots, x_{n}$, we have $\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}} \geq k \cdot \min \left(\left|x_{1}-x_{2}\right|, \mid x_{2}-\right.$ $x_{3}\left|, \ldots,\left|x_{n-1}-x_{n}\right|,\left|x_{n}-x_{1}\right|\right)$
$7 \quad$ Find one real value of x satisfying $\frac{x^{7}}{7}=1+\sqrt[7]{10} x\left(x^{2}-\sqrt[7]{10}\right)^{2}$.

