AoPS Community

2013 Israel National Olympiad

www.artofproblemsolving.com/community/c919196
by Cuubic

1 In the picture there are six coins, each with radius 1 cm . Each coin is tangent to exactly two other coins next to it (as in the picture). Between the coins, there is an empty area whose boundary is a star-like shape. What is the perimeter of this shape?
https://i.imgur.com/aguQRVd.png
2 Let $A=\{n \in \mathbb{Z} \mid 0<n<2013\}$. A subset $B \subseteq A$ is called reduced if for any two numbers $x, y \in B$, we must have $x \cdot y \notin B$. For example, any subset containing the numbers $3,5,15$ cannot be reduced, and same for a subset containing 4,16 .

- Find the maximal size of a reduced subset of A.
- How many reduced subsets are there with that maximal size?

3 Let $p(x)=x^{4}-5773 x^{3}-46464 x^{2}-5773 x+46$. Determine the sum of arctan-s of its real roots.
4 Determine the number of positive integers n satisfying:
$-n<10^{6}$
$-n$ is divisible by 7

- n does not contain any of the digits $2,3,4,5,6,7,8$.
$5 \quad$ A point in the plane is called integral if both its x and y coordinates are integers. We are given a triangle whose vertices are integral. Its sides do not contain any other integral points. Inside the triangle, there are exactly 4 integral points. Must those 4 points lie on one line?

6 Let x_{1}, \ldots, x_{n} be positive real numbers, satisfying $x_{1}+\cdots+x_{n}=n$. Prove that $\frac{x_{1}}{x_{2}}+\frac{x_{2}}{x_{3}}+\cdots+\frac{x_{n-1}}{x_{n}}+\frac{x_{n}}{x_{1}} \leq \frac{4}{x_{1} \cdot x_{2} \cdots \cdots x_{n}}+n-4$.

