Art of Problem Solving

AoPS Community

2011 Israel National Olympiad

www.artofproblemsolving.com/community/c919267
by Cuubic

1 We are given 5771 weights weighing $1,2,3, \ldots, 5770,5771$. We partition the weights into n sets of equal weight. What is the maximal n for which this is possible?

2 Evaluate the sum $\sqrt{1-\frac{1}{2} \cdot \sqrt{1 \cdot 3}}+\sqrt{2-\frac{1}{2} \cdot \sqrt{3 \cdot 5}}+\sqrt{3-\frac{1}{2} \cdot \sqrt{5 \cdot 7}}+\cdots+\sqrt{40-\frac{1}{2} \cdot \sqrt{79 \cdot 81}}$.

3 In some foreign country's government, there are 12 ministers. Each minister has 5 friends and 6 enemies in the government (friendship/enemyship is a symmetric relation). A triplet of ministers is called uniform if all three of them are friends with each other, or all three of them are enemies. How many uniform triplets are there?

4 Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be three congruent circles that are tangent to each other. A third circle β is tangent to them at points A_{1}, A_{2}, A_{3} respectively. Let P be a point on β which is different from A_{1}, A_{2}, A_{3}. For $i=1,2,3$, let B_{i} be the second intersection point of the line $P A_{i}$ with circle α_{i}. Prove that $\Delta B_{1} B_{2} B_{3}$ is equilateral.

5 We have two lists of numbers: One initially containing $1,6,11, \ldots, 96$, and the other initially containing $4,9,14, \ldots, 99$. In every turn, we erase two numbers from one of the lists, and write $\frac{1}{3}$ of their sum (not necessarily an integer) in the other list. We continue this process until there are no possible moves.

- Prove that at the end of the process, there is exactly one number in each list.
- Prove that those two numbers are not equal.
$6 \quad$ There are N red cards and N blue cards. Each card has a positive integer between 1 and N (inclusive) written on it. Prove that we can choose a (non-empty) subset of the red cards and a (non-empty) subset of the blue cards, so that the sum of the numbers on the chosen red cards equals the sum of the numbers on the chosen blue cards.

