AoPS Community

China Second Round Olympiad 2001
www.artofproblemsolving.com/community/c920572
by Henry_2001, billzhao

1 Let O, H be the circumcenter and orthocenter of $\triangle A B C$, respectively. Line $A H$ and $B C$ intersect at D, Line $B H$ and $A C$ intersect at E, Line $C H$ and $A B$ intersect at F, Line $A B$ and $E D$ intersect at $M, A C$ and $F D$ intersect at N. Prove that (1) $O B \perp D F, O C \perp D E ;(2) O H \perp M N$.

2 If nonnegative reals $x_{1}, x_{2}, \ldots, x_{n}$ satisfy

$$
\sum_{i=1}^{n} x_{i}^{2}+2 \sum_{1 \leq k<j \leq n} \sqrt{\frac{k}{j}} x_{k} x_{j}=1
$$

what are the minimum and maximum values of $\sum_{i=1}^{n} x_{i}$?
$3 \quad$ An $m \times n\left(m, n \in \mathbb{N}^{*}\right)$ rectangle is divided into some smaller squares. The sides of each square are all parallel to the corresponding sides of the rectangle, and the length of each side is integer. Determine the minimum of the sum of the sides of these squares.

