Art of Problem Solving

AoPS Community

China Girls Math Olympiad 2019
www.artofproblemsolving.com/community/c921348
by Henry_2001, I1090107005, sqing

Day 1 August 12, 2019
1 Let $A B C D$ be a cyclic quadrilateral with circumcircle $\odot O$. The lines tangent to $\odot O$ at A, B intersect at $L . M$ is the midpoint of the segment $A B$. The line passing through D and parallel to $C M$ intersects $\odot(C D L)$ at F. Line $C F$ intersects $D M$ at K, and intersects $\odot O$ at E (different from point C).
Prove that $E K=D K$.
2 Find integers $a_{1}, a_{2}, \cdots, a_{18}$, s.t. $a_{1}=1, a_{2}=2, a_{18}=2019$, and for all $3 \leq k \leq 18$, there exists $1 \leq i<j<k$ with $a_{k}=a_{i}+a_{j}$.

3 For a sequence, one can perform the following operation: select three adjacent terms a, b, c, and change it into b, c, a. Determine all the possible positive integers $n \geq 3$, such that after finite number of operation, the sequence $1,2, \cdots, n$ can be changed into $n, n-1, \cdots, 1$ finally.

4 Given parallelogram $O A B C$ in the coodinate with O the origin and A, B, C be lattice points. Prove that for all lattice point P in the internal or boundary of $\triangle A B C$, there exists lattice points Q, R (can be the same) in the internal or boundary of $\triangle O A C$ with $\overrightarrow{O P}=\overrightarrow{O Q}+\overrightarrow{O R}$.

Day 2 August 13, 2019

5 Let p be a prime number such that $p \mid\left(2^{2019}-1\right)$. The sequence $a_{1}, a_{2}, \ldots, a_{n}$ satisfies the following conditions: $a_{0}=2, a_{1}=1, a_{n+1}=a_{n}+\frac{p^{2}-1}{4} a_{n-1}(n \geq 1)$. Prove that $p \nmid\left(a_{n}+1\right)$, for any $n \geq 0$.

6 Let $0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n} \leq 1(n \geq 2)$. Prove that

$$
\sqrt[n]{x_{1} x_{2} \cdots x_{n}}+\sqrt[n]{\left(1-x_{1}\right)\left(1-x_{2}\right) \cdots\left(1-x_{n}\right)} \leq \sqrt[n]{1-\left(x_{1}-x_{n}\right)^{2}}
$$

7 Let $D F G E$ be a cyclic quadrilateral. Line $D F$ intersects $E G$ at C, and line $F E$ intersects $D G$ at H. J is the midpoint of $F G$. The line ℓ is the reflection of the line $D E$ in $C H$, and it intersects line $G F$ at I.
Prove that C, J, H, I are concyclic.
8 For a tournament with 8 vertices, if from any vertex it is impossible to follow a route to return to itself, we call the graph a good graph. Otherwise, we call it a bad graph. Prove that (1) there
exists a tournament with 8 vertices such that after changing the orientation of any at most 7 edges of the tournament, the graph is always abad graph; (2) for any tournament with 8 vertices, one can change the orientation of at most 8 edges of the tournament to get a good graph.
(A tournament is a complete graph with directed edges.)

