Art of Problem Solving

AoPS Community

China Western Mathematical Olympiad 2019
www.artofproblemsolving.com/community/c921349
by Henry_2001, mofumofu, sqing

Day 1 August 13, 2019
1 Determine all the possible positive integer n, such that $3^{n}+n^{2}+2019$ is a perfect square.
2 Let O, H be the circumcenter and orthocenter of acute triangle $A B C$ with $A B \neq A C$, respectively. Let M be the midpoint of $B C$ and K be the intersection of $A M$ and the circumcircle of $\triangle B H C$, such that M lies between A and K. Let N be the intersection of $H K$ and $B C$. Show that if $\angle B A M=\angle C A N$, then $A N \perp O H$.

3 Let $S=\{(i, j) \mid i, j=1,2, \ldots, 100\}$ be a set consisting of points on the coordinate plane. Each element of S is colored one of four given colors. A subset T of S is called colorful if T consists of exactly 4 points with distinct colors, which are the vertices of a rectangle whose sides are parallel to the coordinate axes. Find the maximum possible number of colorful subsets S can have, among all legitimate coloring patters.

4 Let n be a given integer such that $n \geq 2$. Find the smallest real number λ with the following property: for any real numbers $x_{1}, x_{2}, \ldots, x_{n} \in[0,1]$, there exists integers $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n} \in\{0,1\}$ such that the inequality

$$
\left|\sum_{k=i}^{j}\left(\varepsilon_{k}-x_{k}\right)\right| \leq \lambda
$$

holds for all pairs of integers (i, j) where $1 \leq i \leq j \leq n$.
Day 2 August 14, 2019
5 In acute-angled triangle $A B C, A B>A C$. Let O, H be the circumcenter and orthocenter of $\triangle A B C$, respectively. The line passing through H and parallel to $A B$ intersects line $A C$ at M, and the line passing through H and parallel to $A C$ intersects line $A B$ at $N . L$ is the reflection of the point H in $M N$. Line $O L$ and $A H$ intersect at K. Prove that K, M, L, N are concyclic.

6 Let $a_{1}, a_{2}, \cdots, a_{n}(n \geq 2)$ be positive numbers such that $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$. Prove that

$$
\sum_{1 \leq i<j \leq n}\left(a_{i}+a_{j}\right)^{2}\left(\frac{1}{i^{2}}+\frac{1}{j^{2}}\right) \geq 4(n-1) \sum_{i=1}^{n} \frac{a_{i}^{2}}{i^{2}} .
$$

7 Prove that for any positive integer k, there exist finitely many sets T satisfying the following two properties: (1)T consists of finitely many prime numbers; (2) $\prod_{p \in T}(p+k)$ is divisible by $\prod_{p \in T} p$.
$8 \quad$ We call a set S a good set if $S=\{x, 2 x, 3 x\}(x \neq 0)$. For a given integer $n(n \geq 3)$, determine the largest possible number of the good subsets of a set containing n positive integers.

