AoPS Community

China Second Round Olympiad 2000
www.artofproblemsolving.com/community/c922130
by Henry_2001

1 In acute-angled triangle $A B C, E, F$ are on the side $B C$, such that $\angle B A E=\angle C A F$, and let M, N be the projections of F onto $A B, A C$, respectively. The line $A E$ intersects $\odot(A B C)$ at D (different from point A).
Prove that $S_{A M D N}=S_{\triangle A B C}$.
2 Define the sequence a_{1}, a_{2}, \ldots and b_{1}, b_{2}, \ldots as $a_{0}=1, a_{1}=4, a_{2}=49$ and for $n \geq 0$

$$
\left\{\begin{array}{l}
a_{n+1}=7 a_{n}+6 b_{n}-3, \\
b_{n+1}=8 a_{n}+7 b_{n}-4
\end{array}\right.
$$

Prove that for any non-negative integer n, a_{n} is a perfect square.
3 There are n people, and given that any 2 of them have contacted with each other at most once. In any group of $n-2$ of them, any one person of the group has contacted with other people in this group for 3^{k} times, where k is a non-negative integer. Determine all the possible value of n.

