AoPS Community

National Mathematical Olympiad 2005

www.artofproblemsolving.com/community/c923875
by parmenides51, digitalboy1, Kunihiko_Chikaya

- \quad 2nd Round

1 An integer is square-free if it is not divisible by a^{2} for any integer $a>1$. Let S be the set of positive square-free integers. Determine, with justification, the value of

$$
\sum_{k \in S}\left[\sqrt{\frac{10^{10}}{k}}\right]
$$

where $[x]$ denote the greatest integer less than or equal to x
2 Let G be the centroid of triangle $A B C$. Through G draw a line parallel to $B C$ and intersecting the sides $A B$ and $A C$ at P and Q respectively. Let $B Q$ intersect $G C$ at E and $C P$ intersect $G B$ at F. If D is midpoint of $B C$, prove that triangles $A B C$ and $D E F$ are similar

3 Let a, b, c be real numbers satisfying $a<b<c, a+b+c=6, a b+b c+a c=9$. Prove that $0<a<1<b<3<c<4$

Let $a b c=k$, then $a, b, c(a<b<c)$ are the roots of cubic equation $x^{3}-6 x^{2}+9 x-k=0 \Longleftrightarrow$ $x(x-3)^{2}=k$
that is to say, $a, b, c(a<b<c)$ are the x-coordinates of the interception of points between $y=x(x-3)^{2}$ and
$y=k$.
$y=x(x-3)^{2}$ have local maximuml value of 4 at $x=1$ and local minimum value of 0 at $x=3$.
Since the x-coordinate of the interception point between $y=x(x-3)^{2}$ and $y=4$ which is the tangent line at
local maximum point $(1,4)$ is a point $(4,4)$,Moving the line $y=k$ so that the two graphs $y=$ $x(x-3)^{2}$ and
$y=k$ have the distinct three interception points, we can find that the range of a, b, c are
$0<a<1,1<b<3,3<c<4$, we are done.
4 Place 2005 points on the circumference of a circle. Two points P, Q are said to form a pair of neighbours if the chord $P Q$ subtends an angle of at most 10 degrees at the centre. Find the smallest number of pairs of neighbours.

