Art of Problem Solving

AoPS Community

National Mathematical Olympiad 2006

www.artofproblemsolving.com/community/c923876
by parmenides51, digitalboy1, dominicleejun

- \quad 2nd Round

1 In the triangle $A B C, \angle A=\frac{\pi}{3}, D, M$ are points on the line $A C$ and E, N are points on the line $A B$ such that $D N$ and $E M$ are the perpendicular bisectors of $A C$ and $A B$ respectively. Let L be the midpoint of $M N$. Prove that $\angle E D L=\angle E L D$

2 Show that any representation of 1 as the sum of distinct reciprocals of numbers drawn from the arithmetic progression $\{2,5,8,11, \ldots\}$ such as given in the following example must have at least eight terms:

$$
1=\frac{1}{2}+\frac{1}{5}+\frac{1}{8}+\frac{1}{11}+\frac{1}{20}+\frac{1}{41}+\frac{1}{110}+\frac{1}{1640}
$$

3 Consider the sequence p_{1}, p_{2}, \ldots of primes such that for each $i \geq 2$, either $p_{i}=2 p_{i-1}-1$ or $p_{i}=2 p_{i-1}+1$. Show that any such sequence has a finite number of terms.

4 Let n be positive integer. Let $S_{1}, S_{2}, \cdots, S_{k}$ be a collection of $2 n$-element subsets of $\{1,2,3,4, \ldots, 4 n-$ $1,4 n\}$ so that $S_{i} \cap S_{j}$ contains at most n elements for all $1 \leq i<j \leq k$. Show that

$$
k \leq 6^{(n+1) / 2}
$$

5 Let a, b, n be positive integers. Prove that n ! divides

$$
b^{n-1} a(a+b)(a+2 b) \ldots(a+(n-1) b)
$$

