## AoPS Community

## National Mathematical Olympiad 2009

www.artofproblemsolving.com/community/c923877
by parmenides51, dominicleejun

- $\quad$ 2nd Round

1 let $O$ be the center of the circle inscribed in a rhombus ABCD. points E,F,G,H are chosen on sides $A B, B C, C D, D A$ respectively so that $E F$ and $G H$ are tangent to inscribed circle. show that EH and FG are parallel.

2 a palindromic number is a number which is unchanged when order of its digits is reversed. prove that the arithmetic progression $18,37, .$. contains infinitely many palindromic numbers.

3 for $k \in \mathbb{N}$, define $A_{n}$ for $n=1,2, \ldots$ by $A_{n+1}=\frac{n A_{n}+2(n+1)^{2 k}}{n+2}, A_{1}=1$
Prove $A_{n}$ is integer for all $n \geq 1$, and $A_{n}$ is odd if and only if $n \equiv 1$ or $2(\bmod 4)$
4 find largest constant C st $\sum_{i=1}^{4}\left(x_{i}+1 / x_{i}\right)^{3} \geq C$
for all positive real numbers $x_{1}, . ., x_{4}$ st $x_{1}^{3}+x_{3}^{3}+3 x_{1} x_{3}=x_{2}+x_{4}=1$
$5 \quad$ Find all integers $\mathbf{x}, \mathbf{y}, \mathbf{z}$ with $2 \leq x \leq y \leq z$ st $x y \equiv 1(\bmod \mathbf{z}) x z \equiv 1(\bmod \mathbf{y}) y z \equiv 1(\bmod \mathbf{x})$

