Art of Problem Solving

AoPS Community

National Mathematical Olympiad 2013

www.artofproblemsolving.com/community/c923878
by parmenides51, Konigsberg, dominicleejun

- \quad 2nd Round

1 Let a_{1}, a_{2}, \ldots be a sequence of integers defined recursively by $a_{1}=2013$ and for $n \geq 1, a_{n+1}$ is the sum of the 2013-th powers of the digits of a_{n}. Do there exist distinct positive integers i, j such that $a_{i}=a_{j}$?

2 Let $A B C$ be an acute-angled triangle and let D, E, and F be the midpoints of $B C, C A$, and $A B$ respectively. Construct a circle, centered at the orthocenter of triangle $A B C$, such that triangle $A B C$ lies in the interior of the circle. Extend $E F$ to intersect the circle at $P, F D$ to intersect the circle at Q and $D E$ to intersect the circle at R. Show that $A P=B Q=C R$.

3 Let n be a positve integer. prove there exists a positive integer n st $n^{2013}-n^{20}+n^{13}-2013$ has at least N distinct prime factors.

4 Let F be a finite non-empty set of integers and let n be a positive integer. Suppose that

- Any $x \in F$ may be written as $x=y+z$ for some $y, z \in F$; • If $1 \leq k \leq n$ and $x_{1}, \ldots, x_{k} \in F$, then $x_{1}+\cdots+x_{k} \neq 0$.

Show that F has at least $2 n+2$ elements.
5 Let $A B C$ be a triangle with integral side lengths such that $\angle A=3 \angle B$. Find the minimum value of its perimeter.

