AoPS Community

National Mathematical Olympiad 2018

www.artofproblemsolving.com/community/c923879
by parmenides51, dominicleejun

- \quad 2nd Round

1 Consider a regular cube with side length 2 . Let A and B be 2 vertices that are furthest apart. Construct a sequence of points on the surface of the cube $A_{1}, A_{2}, \ldots, A_{k}$ so that $A_{1}=A$, $A_{k}=B$ and for any $i=1, \ldots, k-1$, the distance from A_{i} to A_{i+1} is 3 . Find the minimum value of k.

2 Let O be a point inside triangle ABC such that $\angle B O C$ is 90° and $\angle B A O=\angle B C O$. Prove that $\angle O M N$ is 90 degrees, where M and N are the midpoints of $\overline{A C}$ and $\overline{B C}$, respectively.

3 Let n be a positive integer. Show that there exists an integer m such that

$$
2018 m^{2}+20182017 m+2017
$$

is divisible by 2^{n}.
4 each of the squares in a 2×2018 grid of squares is to be coloured black or white such that in any 2×2 block, at least one of the 4 squares is white. let P be the number of ways of colouring the grid. find the largest k so that 3^{k} divides P .

5 Consider a polynomial $P(x, y, z)$ in three variables with integer coefficients such that for any real numbers a, b, c,

$$
P(a, b, c)=0 \Leftrightarrow a=b=c .
$$

Find the largest integer r such that for all such polynomials $P(x, y, z)$ and integers m, n,

$$
m^{r} \mid P(n, n+m, n+2 m) .
$$

Proposed by Ma Zhao Yu

