

AoPS Community

National Mathematical Olympiad 2007

www.artofproblemsolving.com/community/c923880 by parmenides51, orl, Konigsberg, dominicleejun, shobber

- 1 Let x_1, x_2, \ldots, x_n be real numbers satisfying $x_1^2 + x_2^2 + \ldots + x_n^2 = 1$. Prove that for every integer $k \ge 2$ there are integers a_1, a_2, \ldots, a_n , not all zero, such that $|a_i| \le k 1$ for all i, and $|a_1x_1 + a_2x_2 + \ldots + a_nx_n| \le \frac{(k-1)\sqrt{n}}{k^n 1}$.
- **2** Let n > 1 be an integer and let $a_1, a_2, ..., a_n$ be n different integers. Show that the polynomial $f(x) = (x-a_1)(x-a_2) \cdot ... \cdot (x-a_n) 1$ is not divisible by any polynomial with integer coefficients and of degree greater than zero but less than n and such that the highest power of x has coefficient 1.
- **3** Let A_1 , B_1 be two points on the base AB of an isosceles triangle ABC, with $\angle C > 60^\circ$, such that $\angle A_1CB_1 = \angle ABC$. A circle externally tangent to the circumcircle of $\triangle A_1B_1C$ is tangent to the rays CA and CB at points A_2 and B_2 , respectively. Prove that $A_2B_2 = 2AB$.

4 find all functions $f : \mathbb{N} \to \mathbb{N}$ st

 $f(f(m) + f(n)) = m + n \,\forall m, n \in \mathbb{N}$

related: https://artofproblemsolving.com/community/c6h381298

5 Find the largest integer *n* such that *n* is divisible by all positive integers less than $\sqrt[3]{n}$.

Art of Problem Solving is an ACS WASC Accredited School.