Art of Problem Solving

AoPS Community

National Mathematical Olympiad 2007

www.artofproblemsolving.com/community/c923880
by parmenides51, orl, Konigsberg, dominicleejun, shobber

- \quad 2nd Round

1 Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers satisfying $x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}=1$. Prove that for every integer $k \geq 2$ there are integers $a_{1}, a_{2}, \ldots, a_{n}$, not all zero, such that $\left|a_{i}\right| \leq k-1$ for all i, and $\mid a_{1} x_{1}+$ $a_{2} x_{2}+\ldots+a_{n} x_{n} \left\lvert\, \leq \frac{(k-1) \sqrt{n}}{k^{n}-1}\right.$.

2 Let $n>1$ be an integer and let $a_{1}, a_{2}, \ldots, a_{n}$ be n different integers. Show that the polynomial $f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdot \ldots \cdot\left(x-a_{n}\right)-1$ is not divisible by any polynomial with integer coefficients and of degree greater than zero but less than n and such that the highest power of x has coefficient 1.

3 Let A_{1}, B_{1} be two points on the base $A B$ of an isosceles triangle $A B C$, with $\angle C>60^{\circ}$, such that $\angle A_{1} C B_{1}=\angle A B C$. A circle externally tangent to the circumcircle of $\triangle A_{1} B_{1} C$ is tangent to the rays $C A$ and $C B$ at points A_{2} and B_{2}, respectively. Prove that $A_{2} B_{2}=2 A B$.
$4 \quad$ find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ st
$f(f(m)+f(n))=m+n \forall m, n \in \mathbb{N}$
related:
https://artofproblemsolving.com/community/c6h381298
$5 \quad$ Find the largest integer n such that n is divisible by all positive integers less than $\sqrt[3]{n}$.

