Art of Problem Solving

AoPS Community

2019 Singapore MO Open

National Matematical Olympiad 2019

www.artofproblemsolving.com/community/c923881
by parmenides51, dominicleejun, prtQ, mofumofu

- 2nd Round

1 In the acute-angled triangle $A B C$ with circumcircle ω and orthocenter H, points D and E are the feet of the perpendiculars from A onto $B C$ and from B onto $A C$ respecively. Let P be a point on the minor arc $B C$ of ω. Points M and N are the feet of the perpendiculars from P onto lines $B C$ and $A C$ respectively. Let $P H$ and $M N$ intersect at R. Prove that $\angle D M R=\angle M D R$.

2 find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
f(-f(x)-f(y))=1-x-y \quad \forall x, y \in \mathbb{Z}
$$

$3 \quad$ A robot is placed at point P on the x-axis but different from $(0,0)$ and $(1,0)$ and can only move along the axis either to the left or to the right. Two players play the following game. Player A gives a distance and B gives a direction and the robot will move the indicated distance along the indicated direction. Player A aims to move the robot to either $(0,0)$ or $(1,0)$. Player B^{\prime} s aim is to stop A from achieving his aim. For which P can A win?

4 Let $p \equiv 2(\bmod 3)$ be a prime, k a positive integer and $P(x)=3 x^{\frac{2 p-1}{3}}+3 x^{\frac{p+1}{3}}+x+1$. For any integer n, let $R(n)$ denote the remainder when n is divided by p and let $S=\{0,1, \cdots, p-1\}$. At each step, you can either (a) replaced every element i of S with $R(P(i)$) or (b) replaced every element i of S with $R\left(i^{k}\right)$. Determine all k such that there exists a finite sequence of steps that reduces S to $\{0\}$.

Proposed by fattypiggy123
5 In a $m \times n$ chessboard ($m, n \geq 2$), some dominoes are placed (without overlap) with each domino covering exactly two adjacent cells. Show that if no more dominoes can be added to the grid, then at least $2 / 3$ of the chessboard is covered by dominoes.

Proposed by DVDthe1st, mzy and jjax

