AoPS Community

China Second Round Olympiad 1999
www.artofproblemsolving.com/community/c925936
by Henry_2001, mathwizarddude

1 In convex quadrilateral $A B C D, \angle B A C=\angle C A D$. E lies on segment $C D$, and $B E$ and $A C$ intersect at $F, D F$ and $B C$ intersect at G. Prove that $\angle G A C=\angle E A C$.

2 Let a, b, c be real numbers.
Let z_{1}, z_{2}, z_{3} be complex numbers such that $\left|z_{k}\right|=1(k=1,2,3)$ and $\frac{z_{1}}{z_{2}}+\frac{z_{2}}{z_{3}}+\frac{z_{3}}{z_{1}}=1$ Find $\left|a z_{1}+b z_{2}+c z_{3}\right|$.
$3 n$ is a given positive integer, such that its possible to weigh out the mass of any product weighing $1,2,3, \cdots, n g$ with a counter balance without sliding poise and k counterweights, which weigh $x_{i} g(i=1,2, \cdots, k)$, respectively, where $x_{i} \in \mathbb{N}^{*}$ for any $i \in\{1,2, \cdots, k\}$ and $x_{1} \leq x_{2} \leq \cdots \leq x_{k}$.
(1)Let $f(n)$ be the least possible number of k. Find $f(n)$ in terms of n. (2)Find all possible number of n, such that sequence $x_{1}, x_{2}, \cdots, x_{f(n)}$ is uniquely determined.

