Art of Problem Solving

AoPS Community

Saudi Arabia IMO Team Selection Test 2014

www.artofproblemsolving.com/community/c930512
by parmenides51, TheMaskedMagician

- Day I

1 Tarik and Sultan are playing the following game. Tarik thinks of a number that is greater than 100. Then Sultan is telling a number greater than 1. If Tarik's number is divisible by Sultan's number, Sultan wins, otherwise Tarik subtracts Sultan's number from his number and Sultan tells his next number. Sultan is forbidden to repeat his numbers. If Tarik's number becomes negative, Sultan loses. Does Sultan have a winning strategy?

2 Define a domino to be an ordered pair of distinct positive integers. A proper sequence of dominoes is a list of distinct dominoes in which the first coordinate of each pair after the first equals the second coordinate of the immediately preceding pair, and in which (i, j) and (j, i) do not both appear for any i and j. Let D_{n} be the set of all dominoes whose coordinates are no larger than n. Find the length of the longest proper sequence of dominoes that can be formed using the dominoes of D_{n}.
$3 \quad$ Let $A B C$ be a triangle and let P be a point on $B C$. Points M and N lie on $A B$ and $A C$, respectively such that $M N$ is not parallel to $B C$ and $A M P N$ is a parallelogram. Line $M N$ meets the circumcircle of $A B C$ at R and S. Prove that the circumcircle of triangle $R P S$ is tangent to $B C$.
$4 \quad$ Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f(n+1)>\frac{f(n)+f(f(n))}{2}
$$

for all $n \in \mathbb{N}$, where \mathbb{N} is the set of strictly positive integers.

- Day II
$1 \quad$ Let Γ be a circle with center O and $A E$ be a diameter. Point D lies on segment $O E$ and point B is the midpoint of one of the arcs $\widehat{A E}$ of Γ. Construct point C such that $A B C D$ is a parallelogram. Lines $E B$ and $C D$ meet at F. Line $O F$ meets the minor arc $\widehat{E B}$ at I. Prove that $E I$ bisects $\angle B E C$.

2 Let S be a set of positive real numbers with five elements such that for any distinct a, b, c in S, the number $a b+b c+c a$ is rational. Prove that for any a and b in $S, \frac{a}{b}$ is a rational number.

3 Show that it is possible to write a $n \times n$ array of non-negative numbers (not necessarily distinct) such that the sums of entries on each row and each column are pairwise distinct perfect squares.

4 Aws plays a solitaire game on a fifty-two card deck: whenever two cards of the same color are adjacent, he can remove them. Aws wins the game if he removes all the cards. If Aws starts with the cards in a random order, what is the probability for him to win?

- Day III

1 A perfect number is an integer that equals half the sum of its positive divisors. For example, because $2 \cdot 28=1+2+4+7+14+28,28$ is a perfect number.

- (a) A square-free integer is an integer not divisible by a square of any prime number. Find all square-free integers that are perfect numbers.
- (b) Prove that no perfect square is a perfect number.

2 Determine all functions $f:[0, \infty) \rightarrow \mathbb{R}$ such that $f(0)=0$ and

$$
f(x)=1+5 f\left(\left\lfloor\frac{x}{2}\right\rfloor\right)-6 f\left(\left\lfloor\frac{x}{4}\right\rfloor\right)
$$

for all $x>0$.
3 There are 2015 coins on a table. For $i=1,2, \ldots, 2015$ in succession, one must turn over exactly i coins. Prove that it is always possible either to make all of the coins face up or to make all of the coins face down, but not both.
$4 \quad$ Let ω_{1} and ω_{2} with center O_{1} and O_{2} respectively, meet at points A and B. Let X and Y be points on ω_{1}. Lines $X A$ and $Y A$ meet ω_{2} at Z and W, respectively, such that A lies between X and Z and between Y and W. Let M be the midpoint of $O_{1} O_{2}, S$ be the midpoint of $X A$ and T be the midpoint of $W A$. Prove that $M S=M T$ if and only if X, Y, Z and W are concyclic.

- Day IV

1 Let a_{1}, \ldots, a_{n} be a non increasing sequence of positive real numbers. Prove that

$$
\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}} \leq a_{1}+\frac{a_{2}}{\sqrt{2}+1}+\cdots+\frac{a_{n}}{\sqrt{n}+\sqrt{n-1}} .
$$

When does equality hold?
2 In a tournament each player played exactly one game against each of the other players. In each game the winner was awarded 1 point, the loser got 0 points, and each of the two players earned $\frac{1}{2}$ point if the game was a tie. After the completion of the tournament, it was found that exactly half of the points earned by each player were earned in games against the ten players with the least number of points. (In particular, each of the ten lowest scoring players earned half
of his points against the other nine of the ten). What was the total number of players in the tournament?

3 We are given a lattice and two pebbles A and B that are placed at two lattice points. At each step we are allowed to relocate one of the pebbles to another lattice point with the condition that the distance between pebbles is preserved. Is it possible after finite number of steps to switch positions of the pebbles?

4 Points A_{1}, B_{1}, C_{1} lie on the sides $B C, A C$ and $A B$ of a triangle $A B C$, respectively, such that $A B_{1}-A C_{1}=C A_{1}-C B_{1}=B C_{1}-B A_{1}$. Let I_{A}, I_{B}, I_{C} be the incenters of triangles $A B_{1} C_{1}, A_{1} B C_{1}$ and $A_{1} B_{1} C$ respectively. Prove that the circumcenter of triangle $I_{A} I_{B} I_{C}$, is the incenter of triangle $A B C$.

