

AoPS Community

2014 Saudi Arabia BMO TST

Saudi Arabia Team Selection Test for Balkan Math Olympiad 2014

www.artofproblemsolving.com/community/c930518

by parmenides51, TheMaskedMagician

- Day I
- 1 A positive proper divisor is a positive divisor of a number, excluding itself. For positive integers $n \ge 2$, let f(n) denote the number that is one more than the largest proper divisor of n. Determine all positive integers n such that f(f(n)) = 2.
- **2** Prove that among any 16 perfect cubes we can always find two cubes whose difference is divisible by 91.
- **3** Let $n \ge 2$ be a positive integer, and write in a digit form

$$\frac{1}{n} = 0.a_1 a_2 \dots$$

Suppose that $n = a_1 + a_2 + \cdots$. Determine all possible values of n.

- 4 Let ABC be a triangle with $\angle B \leq \angle C$, I its incenter and D the intersection point of line AI with side BC. Let M and N be points on sides BA and CA, respectively, such that BM = BD and CN = CD. The circumcircle of triangle CMN intersects again line BC at P. Prove that quadrilateral DIMP is cyclic.
- **5** Find all positive integers *n* such that

$$3^n + 4^n + \dots + (n+2)^n = (n+3)^n.$$

-	Day II
1	Find the minimum of $\sum\limits_{k=0}^{40} \left(x+rac{k}{2} ight)^2$ where x is a real numbers
2	Let \mathbb{N} denote the set of positive integers, and let S be a set. There exists a function $f : \mathbb{N} \to S$ such that if x and y are a pair of positive integers with their difference being a prime number, then $f(x) \neq f(y)$. Determine the minimum number of elements in S .
3	Let $ABCD$ be a parallelogram. A line ℓ intersects lines AB , BC , CD , DA at four different points E , F , G , H , respectively. The circumcircles of triangles AEF and AGH intersect again

© 2019 AoPS Incorporated

1

AoPS Community

2014 Saudi Arabia BMO TST

at P. The circumcircles of triangles CEF and CGH intersect again at Q. Prove that the line PQ bisects the diagonal BD.

- **4** Let *n* be an integer greater than 2. Consider a set of *n* different points, with no three collinear, in the plane. Prove that we can label the points P_1, P_2, \ldots, P_n such that $P_1P_2 \ldots P_n$ is not a self-intersecting polygon. (A polygon is self-intersecting if one of its side intersects the interior of another side. The polygon is not necessarily convex)
- **5** Let n > 3 be an odd positive integer not divisible by 3. Determine if it is possible to form an $n \times n$ array of numbers such that

- (a) the set of the numbers in each row is a permutation of 0, 1, ..., n-1; the set of the numbers in each column is a permutation of 0, 1, ..., n-1;

- (b) the board is *totally non-symmetric*: for $1 \le i < j \le n$ and $1 \le i' < j' \le n$, if $(i, j) \ne (i', j')$ then $(a_{i,j}, a_{j,i}) \ne (a_{i',j'}, a_{j',i'})$ where $a_{i,j}$ denotes the entry in the *i*th row and *j*th column.

- Day III
- **1** Find all functions $f : \mathbb{N} \to (0, \infty)$ such that f(4) = 4 and

$$\frac{1}{f(1)f(2)} + \frac{1}{f(2)f(3)} + \dots + \frac{1}{f(n)f(n+1)} = \frac{f(n)}{f(n+1)}, \ \forall n \in \mathbb{N},$$

where $\mathbb{N} = \{1, 2, ...\}$ is the set of positive integers.

- **2** Circles ω_1 and ω_2 meet at *P* and *Q*. Segments *AC* and *BD* are chords of ω_1 and ω_2 respectively, such that segment *AB* and ray *CD* meet at *P*. Ray *BD* and segment *AC* meet at *X*. Point *Y* lies on ω_1 such that *PY* \parallel *BD*. Point *Z* lies on ω_2 such that *PZ* \parallel *AC*. Prove that points *Q*, *X*, *Y*, *Z* are collinear.
- **3** Let *a*, *b* be two nonnegative real numbers and *n* a positive integer. Prove that

$$(1-2^{-n})\left|a^{2^{n}}-b^{2^{n}}\right| \ge \sqrt{ab}\left|a^{2^{n}-1}-b^{2^{n}-1}\right|.$$

4 Let $f : \mathbb{N} \to \mathbb{N}$ be an injective function such that f(1) = 2, f(2) = 4 and

$$f(f(m) + f(n)) = f(f(m)) + f(n)$$

for all $m, n \in \mathbb{N}$. Prove that f(n) = n + 2 for all $n \ge 2$.

5 Let ABC be a triangle. Circle Ω passes through points B and C. Circle ω is tangent internally to Ω and also to sides AB and AC at T, P, and Q, respectively. Let M be midpoint of arc \widehat{BC} (containing T) of Ω . Prove that lines PQ, BC, and MT are concurrent.

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.

© 2019 AoPS Incorporated 2