Art of Problem Solving

AoPS Community

Saudi Arabia Team Selection Test for Balkan Math Olympiad 2014

www.artofproblemsolving.com/community/c930518
by parmenides51, TheMaskedMagician

- Day I

1 A positive proper divisor is a positive divisor of a number, excluding itself. For positive integers $n \geq 2$, let $f(n)$ denote the number that is one more than the largest proper divisor of n. Determine all positive integers n such that $f(f(n))=2$.

2 Prove that among any 16 perfect cubes we can always find two cubes whose difference is divisible by 91 .

3 Let $n \geq 2$ be a positive integer, and write in a digit form

$$
\frac{1}{n}=0 . a_{1} a_{2} \ldots
$$

Suppose that $n=a_{1}+a_{2}+\cdots$. Determine all possible values of n.
4 Let $A B C$ be a triangle with $\angle B \leq \angle C, I$ its incenter and D the intersection point of line $A I$ with side $B C$. Let M and N be points on sides $B A$ and $C A$, respectively, such that $B M=B D$ and $C N=C D$. The circumcircle of triangle $C M N$ intersects again line $B C$ at P. Prove that quadrilateral $D I M P$ is cyclic.

5 Find all positive integers n such that

$$
3^{n}+4^{n}+\cdots+(n+2)^{n}=(n+3)^{n} .
$$

- Day II

1 Find the minimum of $\sum_{k=0}^{40}\left(x+\frac{k}{2}\right)^{2}$ where x is a real numbers
2 Let \mathbb{N} denote the set of positive integers, and let S be a set. There exists a function $f: \mathbb{N} \rightarrow S$ such that if x and y are a pair of positive integers with their difference being a prime number, then $f(x) \neq f(y)$. Determine the minimum number of elements in S.

3 Let $A B C D$ be a parallelogram. A line ℓ intersects lines $A B, B C, C D, D A$ at four different points E, F, G, H, respectively. The circumcircles of triangles $A E F$ and $A G H$ intersect again
at P. The circumcircles of triangles $C E F$ and $C G H$ intersect again at Q. Prove that the line $P Q$ bisects the diagonal $B D$.

4 Let n be an integer greater than 2. Consider a set of n different points, with no three collinear, in the plane. Prove that we can label the points $P_{1}, P_{2}, \ldots, P_{n}$ such that $P_{1} P_{2} \ldots P_{n}$ is not a self-intersecting polygon. (A polygon is self-intersecting if one of its side intersects the interior of another side. The polygon is not necessarily convex)

5 Let $n>3$ be an odd positive integer not divisible by 3 . Determine if it is possible to form an $n \times n$ array of numbers such that

- (a) the set of the numbers in each row is a permutation of $0,1, \ldots, n-1$;
the set of the numbers in each column is a permutation of $0,1, \ldots, n-1$;
- (b) the board is totally non-symmetric: for $1 \leq i<j \leq n$ and $1 \leq i^{\prime}<j^{\prime} \leq n$, if $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$ then $\left(a_{i, j}, a_{j, i}\right) \neq\left(a_{i^{\prime}, j^{\prime}}, a_{j^{\prime}, i^{\prime}}\right)$ where $a_{i, j}$ denotes the entry in the $i^{\text {th }}$ row and $j^{\text {th }}$ column.

- Day III

1 Find all functions $f: \mathbb{N} \rightarrow(0, \infty)$ such that $f(4)=4$ and

$$
\frac{1}{f(1) f(2)}+\frac{1}{f(2) f(3)}+\cdots+\frac{1}{f(n) f(n+1)}=\frac{f(n)}{f(n+1)}, \forall n \in \mathbb{N},
$$

where $\mathbb{N}=\{1,2, \ldots\}$ is the set of positive integers.
2 Circles ω_{1} and ω_{2} meet at P and Q. Segments $A C$ and $B D$ are chords of ω_{1} and ω_{2} respectively, such that segment $A B$ and ray $C D$ meet at P. Ray $B D$ and segment $A C$ meet at X. Point Y lies on ω_{1} such that $P Y \| B D$. Point Z lies on ω_{2} such that $P Z \| A C$. Prove that points Q, X, Y, Z are collinear.

3 Let a, b be two nonnegative real numbers and n a positive integer. Prove that

$$
\left(1-2^{-n}\right)\left|a^{2^{n}}-b^{2^{n}}\right| \geq \sqrt{a b}\left|a^{2^{n}-1}-b^{2^{n}-1}\right|
$$

$4 \quad$ Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be an injective function such that $f(1)=2, f(2)=4$ and

$$
f(f(m)+f(n))=f(f(m))+f(n)
$$

for all $m, n \in \mathbb{N}$. Prove that $f(n)=n+2$ for all $n \geq 2$.
$5 \quad$ Let $A B C$ be a triangle. Circle Ω passes through points B and C. Circle ω is tangent internally to Ω and also to sides $A B$ and $A C$ at T, P, and Q, respectively. Let M be midpoint of arc $\widehat{B C}$ (containing T) of Ω. Prove that lines $P Q, B C$, and $M T$ are concurrent.

