

AoPS Community

2013 Dutch IMO TST

Dutch IMO TST Team Selection Test 2013

www.artofproblemsolving.com/community/c930545 by parmenides51, hajimbrak

– Day 1

1 Determine all 4-tuples (a, b, c, d) of real numbers satisfying the following four equations: \langle	$\begin{cases} ab + c + d = 3\\ bc + d + a = 5\\ cd + a + b = 2\\ da + b + c = 6 \end{cases}$
---	---

- **2** Determine all integers *n* for which $\frac{4n-2}{n+5}$ is the square of a rational number.
- **3** Fix a triangle ABC. Let Γ_1 the circle through B, tangent to edge in A. Let Γ_2 the circle through C tangent to edge AB in A. The second intersection of Γ_1 and Γ_2 is denoted by D. The line AD has second intersection E with the circumcircle of $\triangle ABC$. Show that D is the midpoint of the segment AE.
- 4 Let $n \ge 3$ be an integer, and consider a $n \times n$ -board, divided into n^2 unit squares. For all $m \ge 1$, arbitrarily many $1 \times m$ -rectangles (type I) and arbitrarily many $m \times 1$ -rectangles (type II) are available. We cover the board with N such rectangles, without overlaps, and such that every rectangle lies entirely inside the board. We require that the number of type I rectangles used is equal to the number of type II rectangles used.(Note that a 1×1 -rectangle has both types.) What is the minimal value of N for which this is possible?
- 5 Let a, b, and c be positive real numbers satisfying abc = 1. Show that $a + b + c \ge \sqrt{\frac{1}{3}(a+2)(b+2)(c+2)}$
- Day 2
- **1** Show that $\sum_{n=0}^{2013} \frac{4026!}{(n!(2013-n)!)^2}$ is a perfect square.
- **2** Let *P* be the point of intersection of the diagonals of a convex quadrilateral *ABCD*.Let *X*, *Y*, *Z* be points on the interior of *AB*, *BC*, *CD* respectively such that $\frac{AX}{XB} = \frac{BY}{YC} = \frac{CZ}{ZD} = 2$. Suppose that *XY* is tangent to the circumcircle of $\triangle CYZ$ and that *YZ* is tangent to the circumcircle of $\triangle BXY$. Show that $\angle APD = \angle XYZ$.
- **3** Fix a sequence $a_1, a_2, a_3 \dots$ of integers satisfying the following condition: for all prime numbers p and all positive integers k, we have $a_{pk+1} = pa_k 3a_p + 13$. Determine all possible values of

AoPS Community

	a_{2013} .
4	Determine all positive integers $n \ge 2$ satisfying $i + j \equiv {n \choose i} + {n \choose j} \pmod{2}$ for all i and j with $0 \le i \le j \le n$.
5	Let $ABCDEF$ be a cyclic hexagon satisfying $AB \perp BD$ and $BC = EF$.Let P be the intersection of lines BC and AD and let Q be the intersection of lines EF and AD .Assume that P and Q are on the same side of D and A is on the opposite side.Let S be the midpoint of AD .Let K and L be the incentres of $\triangle BPS$ and $\triangle EQS$ respectively.Prove that $\angle KDL = 90^0$.

AoPS Online (AoPS Academy AoPS & AoPS & AoPS & AoPS