Art of Problem Solving

AoPS Community

Dutch IMO TST Team Selection Test 2013

www.artofproblemsolving.com/community/c930545
by parmenides51, hajimbrak

- Day 1

1 Determine all 4-tuples (a, b, c, d) of real numbers satisfying the following four equations: $\left\{\begin{array}{l}a b+c+d=3 \\ b c+d+a=5 \\ c d+a+b=2 \\ d a+b+c=6\end{array}\right.$
2 Determine all integers n for which $\frac{4 n-2}{n+5}$ is the square of a rational number.
3 Fix a triangle $A B C$. Let Γ_{1} the circle through B, tangent to edge in A. Let Γ_{2} the circle through C tangent to edge $A B$ in A. The second intersection of Γ_{1} and Γ_{2} is denoted by D. The line $A D$ has second intersection E with the circumcircle of $\triangle A B C$. Show that D is the midpoint of the segment $A E$.
$4 \quad$ Let $n \geq 3$ be an integer, and consider a $n \times n$-board, divided into n^{2} unit squares. For all $m \geq 1$, arbitrarily many $1 \times m$-rectangles (type I) and arbitrarily many $m \times 1$-rectangles (type II) are available. We cover the board with N such rectangles, without overlaps, and such that every rectangle lies entirely inside the board. We require that the number of type I rectangles used is equal to the number of type II rectangles used. (Note that a 1×1-rectangle has both types.) What is the minimal value of N for which this is possible?

5 Let a, b, and c be positive real numbers satisfying $a b c=1$.
Show that $a+b+c \geq \sqrt{\frac{1}{3}(a+2)(b+2)(c+2)}$

- Day 2

1 Show that $\sum_{n=0}^{2013} \frac{4026!}{(n!(2013-n)!)^{2}}$ is a perfect square.
2 Let P be the point of intersection of the diagonals of a convex quadrilateral $A B C D$. Let X, Y, Z be points on the interior of $A B, B C, C D$ respectively such that $\frac{A X}{X B}=\frac{B Y}{Y C}=\frac{C Z}{Z D}=2$. Suppose that $X Y$ is tangent to the circumcircle of $\triangle C Y Z$ and that $Y Z$ is tangent to the circumcircle of $\triangle B X Y$. Show that $\angle A P D=\angle X Y Z$.

3 Fix a sequence $a_{1}, a_{2}, a_{3} \ldots$ of integers satisfying the following condition:for all prime numbers p and all positive integers k, we have $a_{p k+1}=p a_{k}-3 a_{p}+13$. Determine all possible values of
a_{2013}.
4 Determine all positive integers $n \geq 2$ satisfying $i+j \equiv\binom{n}{i}+\binom{n}{j}(\bmod 2)$ for all i and j with $0 \leq i \leq j \leq n$.
$5 \quad$ Let $A B C D E F$ be a cyclic hexagon satisfying $A B \perp B D$ and $B C=E F$. Let P be the intersection of lines $B C$ and $A D$ and let Q be the intersection of lines $E F$ and $A D$.Assume that P and Q are on the same side of D and A is on the opposite side. Let S be the midpoint of $A D$. Let K and L be the incentres of $\triangle B P S$ and $\triangle E Q S$ respectively. Prove that $\angle K D L=90^{\circ}$.

