AoPS Community

Gulf Mathematical Olympiad 2017

www.artofproblemsolving.com/community/c930552
by m2121, parmenides51

1 1- Find a pair (m, n) of positive integers such that $K=\left|2^{m}-3^{n}\right|$ in all of this cases :
a) $K=5 b) K=11 c) K=19$

2-Is there a pair (m, n) of positive integers such that :

$$
\left|2^{m}-3^{n}\right|=2017
$$

3-Every prime number less than 41 can be represented in the form $\left|2^{m}-3^{n}\right|$ by taking an Appropriate pair (m, n)
of positive integers. Prove that the number 41 cannot be represented in the form $\left|2^{m}-3^{n}\right|$ where m and n are positive integers
4-Note that $2^{5}+3^{2}=41$. The number 53 is the least prime number that cannot be represented as a sum or an difference of a power of 2 and a power of 3 . Prove that the number 53 cannot be represented in any of the forms $2^{m}-3^{n}, 3^{n}-2^{m}, 2^{m}-3^{n}$ where m and n are positive integers

2 One country consists of islands $A_{1}, A_{2}, \cdots, A_{N}$, The ministry of transport decided to build some bridges such that anyone will can travel by car from any of the islands $A_{1}, A_{2}, \cdots, A_{N}$ to any another island by one or more of these bridges. For technical reasons the only bridges that can be built is between A_{i} and A_{i+1} where $i=1,2, \cdots, N-1$, and between A_{i} and A_{N} where $i<N$.

We say that a plan to build some bridges is good if it is satisfies the above conditions, but when we remove any bridge it will not satisfy this conditions. We assume that there is a_{N} of good plans. Observe that $a_{1}=1$ (The only good plan is to not build any bridge), and $a_{2}=1$ (We build one bridge).

1-Prove that $a_{3}=3$
2-Draw at least 5 different good plans in the case that $N=4$ and the islands are the vertices of a square
3-Compute a_{4}
4-Compute a_{6}
5-Prove that there is a positive integer i such that 1438 divides a_{i}

Let C_{1} and C_{2} be two different circles, and let their radii be r_{1} and r_{2}, the two circles are passing through the two points A and B
(i)Let P_{1} on C_{1} and P_{2} on C_{2} such that the line $P_{1} P_{2}$ passes through A. Prove that $P_{1} B \cdot r_{2}=$ $P_{2} B \cdot r_{1}$
(ii)Let $D E F$ be a triangle that it's inscribed in C_{1}, and let $D^{\prime} E^{\prime} F^{\prime}$ be a triangle that is inscribed in C_{2}. The lines $E E^{\prime}, D D^{\prime}$ and $F F^{\prime}$ all pass through A. Prove that the triangles $D E F$ and $D^{\prime} E^{\prime} F^{\prime}$ are similar
(iii)The circle C_{3} also passes through A and B. Let l be a line that passes through A and cuts circles C_{i} in M_{i} with $i=1,2,3$. Prove that the value of

$$
\frac{M_{1} M_{2}}{M_{1} M_{3}}
$$

is constant regardless of the position of l Provided that l is different from $A B$
$4 \quad 1$ - Prove that $55<(1+\sqrt{3})^{4}<56$.
2 - Find the largest power of 2 that divides $\left\lceil(1+\sqrt{3})^{2 n}\right\rceil$ for the positive integer n

