AoPS Community

Romania National Olympiad 2015

www.artofproblemsolving.com/community/c930777
by CatalinBordea, andreiromania

- \quad Grade 9

1 Show that among the square roots of the first 2015 natural numbers, we cannot choose an arithmetic sequence composed of 45 elements.

2 A quadratic function has the property that for any interval of length 1, the length of its image is at least 1 .
Show that for any interval of length 2 , the length of its image is at least 4 .
3 Let be a point P in the interior of a triangle $A B C$. The lines $A P, B P, C P$ meet $B C, A C$, respectively, $A B$ at A_{1}, B_{1}, respectively, C_{1}. If

$$
\mathcal{A}_{P B A_{1}}+\mathcal{A}_{P C B_{1}}+\mathcal{A}_{P A C_{1}}=\frac{1}{2} \mathcal{A}_{A B C}
$$

show that P lies on a median of $A B C$.
\mathcal{A} denotes area.
4 Let $a, b, c, d \geq 0$ real numbers so that $a+b+c+d=1$. Prove that $\sqrt{a+\frac{(b-c)^{2}}{6}+\frac{(c-d)^{2}}{6}+\frac{(d-b)^{2}}{6}}+$ $\sqrt{b}+\sqrt{c}+\sqrt{d} \leq 2$.

- \quad Grade 10

1 Find all triplets (a, b, c) of nonzero complex numbers having the same absolute value and which verify the equality:

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=-1
$$

2 Consider a natural number n for which it exist a natural number k and k distinct primes so that $n=p_{1} \cdot p_{2} \cdots p_{k}$.
a) Find the number of functions $f:\{1,2, \ldots, n\} \longrightarrow\{1,2, \ldots, n\}$ that have the property that $f(1) \cdot f(2) \cdots f(n)$ divides n.
b) If $n=6$, find the number of functions $f:\{1,2,3,4,5,6\} \longrightarrow\{1,2,3,4,5,6\}$ that have the property that $f(1) \cdot f(2) \cdot f(3) \cdot f(4) \cdot f(5) \cdot f(6)$ divides 36 .

AoPS Community

$3 \quad$ Find all functions $f, g: \mathbb{Q} \longrightarrow \mathbb{Q}$ that verify the relations

$$
\left\{\begin{array}{l}
f(g(x)+g(y))=f(g(x))+y \\
g(f(x)+f(y))=g(f(x))+y
\end{array}\right.
$$

for all $x, y \in \mathbb{Q}$.
4 Let be a finite set A of real numbers, and define the sets $S_{ \pm}=\{x \pm y \mid x, y \in A\}$. Show that $|A| \cdot\left|S_{-}\right| \leq\left|S_{+}\right|^{2}$.

- \quad Grade 11

$1 \quad$ Find all differentiable functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ that verify the conditions: (i) $\quad \forall x \in \mathbb{Z} \quad f^{\prime}(x)=0$ (ii) $\forall x \in \mathbb{R} \quad f^{\prime}(x)=0 \Longrightarrow f(x)=0$

2 Let be a 5×5 complex matrix A whose trace is 0 , and such that $I_{5}-A$ is invertible.
Prove that $A^{5} \neq I_{5}$.
3 Let be two nonnegative real numbers a, b with $b>a$, and a sequence $\left(x_{n}\right)_{n \geq 1}$ of real numbers such that the sequence $\left(\frac{x_{1}+x_{2}+\cdots+x_{n}}{n^{a}}\right)_{n \geq 1}$ is bounded.
Show that the sequence $\left(x_{1}+\frac{x_{2}}{2^{b}}+\frac{x_{3}}{3^{b}}+\cdots+\frac{x_{n}}{n^{b}}\right)_{n \geq 1}$ is convergent.
4 Let be three natural numbers k, m, n an $m \times n$ matrix A, an $n \times m$ matrix B, and k complex numbers $a_{0}, a_{1}, \ldots, a_{k}$ such that the following conditions hold.
(i) $m \geq n \geq 2$ (ii) $a_{0} I_{m}+a_{1} A B+a_{2}(A B)^{2}+\cdots+a_{k}(A B)^{k}=O_{m}$ (iii) $a_{0} I_{m}+a_{1} B A+$ $a_{2}(B A)^{2}+\cdots+a_{k}(B A)^{k} \neq O_{n}$

Prove that $a_{0}=0$.

- \quad Grade 12

1 Let be a ring that has the property that all its elements are the product of two idempotent elements of it. Show that:
a) 1 is the only unit of this ring.
b) this ring is Boolean.

2 Show that the set of all elements minus 0 of a finite division ring that has at least 4 elements can be partitioned into two nonempty sets A, B having the property that

$$
\sum_{x \in A} x=\prod_{y \in B} y
$$

$3 \quad$ Let be the set $\mathcal{C}=\left\{f:[0,1] \longrightarrow \mathbb{R}\left|\exists f^{\prime \prime}\right|_{[0,1]} \quad \exists x_{1}, x_{2} \in[0,1] \quad x_{1} \neq x_{2} \wedge\left(f\left(x_{1}\right)=f\left(x_{2}\right)=0 \vee f\left(x_{1}\right)=f^{\prime}\right.\right.$ and $f^{*} \in \mathcal{C}$ such that $\int_{0}^{1}\left|f^{*}(x)\right| d x=\sup _{f \in \mathcal{C}} \int_{0}^{1}|f(x)| d x$.
Find $\int_{0}^{1}\left|f^{*}(x)\right| d x$ and describe f^{*}.
4 Find all non-constant polynoms $f \in \mathbb{Q}[X]$ that don't have any real roots in the interval $[0,1]$ and for which there exists a function $\xi:[0,1] \longrightarrow \mathbb{Q}[X] \times \mathbb{Q}[X], \xi(x):=\left(g_{x}, h_{x}\right)$ such that $h_{x}(x) \neq 0$ and $\int_{0}^{x} \frac{d t}{f(t)}=\frac{g_{x}(x)}{h_{x}(x)}$, for all $x \in[0,1]$.

