AoPS Community

Dutch BxMO/EGMO Team Selection Test 2012

www.artofproblemsolving.com/community/c931746
by parmenides51

1 Do there exist quadratic polynomials $P(x)$ and $Q(x)$ with real coeffcients such that the polynomial $P(Q(x))$ has precisely the zeros $x=2, x=3, x=5$ and $x=7$?

2 Let $\triangle A B C$ be a triangle and let X be a point in the interior of the triangle. The second intersection points of the lines $X A, X B$ and $X C$ with the circumcircle of $\triangle A B C$ are P, Q and R. Let U be a point on the ray $X P$ (these are the points on the line $X P$ such that P and U lie on the same side of X). The line through U parallel to $A B$ intersects $B Q$ in V. The line through U parallel to $A C$ intersects $C R$ in W. Prove that Q, R, V, and W lie on a circle.
$3 \quad$ Find all pairs of positive integers (x, y) for which $x^{3}+y^{3}=4\left(x^{2} y+x y^{2}-5\right)$.
4 Let $A B C D$ a convex quadrilateral (this means that all interior angles are smaller than 180°), such that there exist a point M on line segment $A B$ and a point N on line segment $B C$ having the property that $A N$ cuts the quadrilateral in two parts of equal area, and such that the same property holds for $C M$.
Prove that $M N$ cuts the diagonal $B D$ in two segments of equal length.
5 Let A be a set of positive integers having the following property: for each positive integer n exactly one of the three numbers $n, 2 n$ and $3 n$ is an element of A. Furthermore, it is given that $2 \in A$. Prove that $13824 \notin A$.

