AoPS Community

Dutch BxMO/EGMO Team Selection Test 2013

www.artofproblemsolving.com/community/c931751
by parmenides51, Orkhan-Ashraf_2002

1 In quadrilateral $A B C D$ the sides $A B$ and $C D$ are parallel. Let M be the midpoint of diagonal $A C$. Suppose that triangles $A B M$ and $A C D$ have equal area. Prove that $D M / / B C$.

2 Consider a triple (a, b, c) of pairwise distinct positive integers satisfying $a+b+c=2013$. A step consists of replacing the triple (x, y, z) by the triple $(y+z-x, z+x-y, x+y-z)$. Prove that, starting from the given triple (a, b, c), after 10 steps we obtain a triple containing at least one negative number.
$3 \quad$ Find all triples (x, n, p) of positive integers x and n and primes p for which the following holds $x^{3}+3 x+14=2 p^{n}$

4 Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(x+y f(x))=f(x f(y))-x+f(y+f(x))
$$

$5 \quad$ Let $A B C D$ be a cyclic quadrilateral for which $|A D|=|B D|$. Let M be the intersection of $A C$ and $B D$. Let I be the incentre of $\triangle B C M$. Let N be the second intersection pointof $A C$ and the circumscribed circle of $\triangle B M I$. Prove that $|A N| \cdot|N C|=|C D| \cdot|B N|$.

