

AoPS Community

Hong Kong Team Selection Test 2020

www.artofproblemsolving.com/community/c931989 by Blastzit

Test 1 August 24, 2019

1 Find all functions $f : \mathbb{N} \to \mathbb{N}$ such that for every positive integer *n* the following is valid: If d_1, d_2, \ldots, d_s are all the positive divisors of *n*, then

$$f(d_1)f(d_2)\dots f(d_s)=n.$$

- **2** Let D be an arbitrary point inside $\triangle ABC$. Let Γ be the circumcircle of $\triangle BCD$. The external angle bisector of $\angle ABC$ meets Γ again at E. The external angle bisector of $\angle ACB$ meets Γ again at F. The line EF meets the extension of AB and AC at P and Q respectively. Prove that the circumcircles of $\triangle BFP$ and $\triangle CEQ$ always pass through the same fixed point regardless of the position of D. (Assume all the labelled points are distinct.)
- **3** Given a list of integers $2^1 + 1, 2^2 + 1, \dots, 2^{2019} + 1$, Adam chooses two different integers from the list and computes their greatest common divisor. Find the sum of all possible values of this greatest common divisor.
- **4** Find the total number of primes p < 100 such that $\lfloor (2 + \sqrt{5})^p \rfloor 2^{p+1}$ is divisible by p. Here $\lfloor x \rfloor$ denotes the greatest integer less than or equal to x.
- **5** In $\triangle ABC$, let *D* be a point on side *BC*. Suppose the incircle ω_1 of $\triangle ABD$ touches sides *AB* and *AD* at *E*, *F* respectively, and the incircle ω_2 of $\triangle ACD$ touches sides *AD* and *AC* at *F*, *G* respectively. Suppose the segment *EG* intersects ω_1 and ω_2 again at *P* and *Q* respectively. Show that line *AD*, tangent of ω_1 at *P* and tangent of ω_2 at *Q* are concurrent.
- **6** For a sequence with some ones and zeros, we count the number of continuous runs of equal digits in it. (For example the sequence 011001010 has 7 continuous runs: 0, 11, 00, 1, 0, 1, 0.) Find the sum of the number of all continuous runs for all possible sequences with 2019 ones and 2019 zeros.

Test 2 October 26, 2019

1 Let $\triangle ABC$ be an acute triangle with incenter I and orthocenter H. AI meets the circumcircle of $\triangle ABC$ again at M. Suppose the length IM is exactly the circumradius of $\triangle ABC$. Show that $AH \ge AI$.

AoPS Community

- **2** Suppose there are 2019 distinct points in a plane and the distances between pairs of them attain *k* different values. Prove that *k* is at least 44.
- **3** Two circles Γ and Ω intersect at two distinct points A and B. Let P be a point on Γ . The tangent at P to Γ meets Ω at the points C and D, where D lies between P and C, and ABCD is a convex quadrilateral. The lines CA and CB meet Γ again at E and F respectively. The lines DA and DB meet Γ again at S and T respectively. Suppose the points P, E, S, F, B, T, A lie on Γ in this order. Prove that PC, ET, SF are parallel.
- **4** Find all real-valued functions *f* defined on the set of real numbers such that

$$f(f(x) + y) + f(x + f(y)) = 2f(xf(y))$$

for any real numbers x and y.

Act of Problem Solving is an ACS WASC Accredited School.