Art of Problem Solving

AoPS Community

Hong Kong Team Selection Test 2020

www.artofproblemsolving.com/community/c931989
by Blastzit

Test 1 August 24, 2019

1 Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for every positive integer n the following is valid: If $d_{1}, d_{2}, \ldots, d_{s}$ are all the positive divisors of n, then

$$
f\left(d_{1}\right) f\left(d_{2}\right) \ldots f\left(d_{s}\right)=n
$$

2 Let D be an arbitrary point inside $\triangle A B C$. Let Γ be the circumcircle of $\triangle B C D$. The external angle bisector of $\angle A B C$ meets Γ again at E. The external angle bisector of $\angle A C B$ meets Γ again at F. The line $E F$ meets the extension of $A B$ and $A C$ at P and Q respectively. Prove that the circumcircles of $\triangle B F P$ and $\triangle C E Q$ always pass through the same fixed point regardless of the position of D. (Assume all the labelled points are distinct.)

3 Given a list of integers $2^{1}+1,2^{2}+1, \ldots, 2^{2019}+1$, Adam chooses two different integers from the list and computes their greatest common divisor. Find the sum of all possible values of this greatest common divisor.

4 Find the total number of primes $p<100$ such that $\left\lfloor(2+\sqrt{5})^{p}\right\rfloor-2^{p+1}$ is divisible by p. Here $\lfloor x\rfloor$ denotes the greatest integer less than or equal to x.

5 In $\triangle A B C$, let D be a point on side $B C$. Suppose the incircle ω_{1} of $\triangle A B D$ touches sides $A B$ and $A D$ at E, F respectively, and the incircle ω_{2} of $\triangle A C D$ touches sides $A D$ and $A C$ at F, G respectively. Suppose the segment $E G$ intersects ω_{1} and ω_{2} again at P and Q respectively. Show that line $A D$, tangent of ω_{1} at P and tangent of ω_{2} at Q are concurrent.

6 For a sequence with some ones and zeros, we count the number of continuous runs of equal digits in it. (For example the sequence 011001010 has 7 continuous runs: $0,11,00,1,0,1,0$.) Find the sum of the number of all continuous runs for all possible sequences with 2019 ones and 2019 zeros.

Test 2 October 26, 2019
1 Let $\triangle A B C$ be an acute triangle with incenter I and orthocenter H. $A I$ meets the circumcircle of $\triangle A B C$ again at M. Suppose the length $I M$ is exactly the circumradius of $\triangle A B C$. Show that $A H \geq A I$.

2 Suppose there are 2019 distinct points in a plane and the distances between pairs of them attain k different values. Prove that k is at least 44.
$3 \quad$ Two circles Γ and Ω intersect at two distinct points A and B. Let P be a point on Γ. The tangent at P to Γ meets Ω at the points C and D, where D lies between P and C, and $A B C D$ is a convex quadrilateral. The lines $C A$ and $C B$ meet Γ again at E and F respectively. The lines $D A$ and $D B$ meet Γ again at S and T respectively. Suppose the points P, E, S, F, B, T, A lie on Γ in this order. Prove that $P C, E T, S F$ are parallel.

4 Find all real-valued functions f defined on the set of real numbers such that

$$
f(f(x)+y)+f(x+f(y))=2 f(x f(y))
$$

for any real numbers x and y.

