AoPS Community

Dutch BxMO Team Selection Test 2018

www.artofproblemsolving.com/community/c931997
by parmenides51

1 We have 1000 balls in 40 different colours, 25 balls of each colour. Determine the smallest n for which the following holds: if you place the 1000 balls in a circle, in any arbitrary way, then there are always n adjacent balls which have at least 20 different colours.

2 Let $\triangle A B C$ be a triangle of which the side lengths are positive integers which are pairwise coprime. The tangent in A to the circumcircle intersects line $B C$ in D. Prove that $B D$ is not an integer.
$3 \quad$ Let p be a prime number.
Prove that it is possible to choose a permutation $a_{1}, a_{2}, \ldots, a_{p}$ of $1,2, \ldots, p$ such that the numbers $a_{1}, a_{1} a_{2}, a_{1} a_{2} a_{3}, \ldots, a_{1} a_{2} a_{3} \ldots a_{p}$ all have different remainder upon division by p.

4 In a non-isosceles triangle $\triangle A B C$ we have $\angle B A C=60^{\circ}$. Let D be the intersection of the angular bisector of $\angle B A C$ with side $B C, O$ the centre of the circumcircle of $\triangle A B C$ and E the intersection of $A O$ and $B C$. Prove that $\angle A E D+\angle A D O=90^{\circ}$.
$5 \quad$ Let n be a positive integer. Determine all positive real numbers x satisfying $n x^{2}+\frac{2^{2}}{x+1}+\frac{3^{2}}{x+2}+$ $\ldots+\frac{(n+1)^{2}}{x+n}=n x+\frac{n(n+3)}{2}$

