

#### **AoPS Community**

### 2017 Romania National Olympiad

#### **Romania National Olympiad 2017**

www.artofproblemsolving.com/community/c932612 by CatalinBordea, Mefistocle

- Grade 9
- 1 Prove that the line joining the centroid and the incenter of a non-isosceles triangle is perpendicular to the base if and only if the sum of the other two sides is thrice the base.
- **2** Let be a square ABCD, a point E on AB, a point N on CD, points F, M on BC, name P the intersection of AN with DE, and name Q the intersection of AM with EF. If the triangles AMN and DEF are equilateral, prove that PQ = FM.
- **3** Let be two natural numbers n and a. **a)** Prove that there exists an n-tuplet of natural numbers  $(a_1, a_2, \ldots, a_n)$  that satisfy the following equality.

$$1 + \frac{1}{a} = \prod_{i=1}^{n} \left( 1 + \frac{1}{a_i} \right)$$

**b)** Show that there exist only finitely such *n*-tuplets.

**4** Let be two natural numbers b > a > 0 and a function  $f : \mathbb{R} \longrightarrow \mathbb{R}$  having the following property.

$$f(x^2 + ay) \ge f(x^2 + by), \quad \forall x, y \in \mathbb{R}$$

**a)** Show that  $f(s) \le f(0) \le f(t)$ , for any real numbers s < 0 < t.

- **b)** Prove that f is constant on the interval  $(0, \infty)$ .
- c) Give an example of a non-monotone such function.
- Grade 10
- 1 Solve in the set of real numbers the equation  $a^{[x]} + \log_a \{x\} = x$ , where *a* is a real number from the interval (0, 1).

[] and {} denote the floor, respectively, the fractional part.

**2** A function  $f : \mathbb{Q}_{>0} \longrightarrow \mathbb{Q}$  has the following property:

$$f(xy) = f(x) + f(y), \quad x, y \in \mathbb{Q}_{>0}$$

a) Demonstrate that there are no injective functions with this property.

b) Do exist surjective functions having this property?

# **AoPS Community**

# 2017 Romania National Olympiad

| 3 | $\sin\frac{\pi}{4n} \ge \frac{\sqrt{2}}{2n},  \forall n \in \mathbb{N}$                                                                                                                                                                       |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | Find the number of functions $A \xrightarrow{f} A$ for which there exist two functions $A \xrightarrow{g} B \xrightarrow{h} A$ having the properties that $g \circ h = id$ . and $h \circ g = f$ , where $B$ and $A$ are two finite sets.     |
| - | Grade 11                                                                                                                                                                                                                                      |
| 1 | Let be a surjective function $f : \mathbb{R} \longrightarrow \mathbb{R}$ that has the property that if the sequence $(f(x_n))_{n \ge 1}$ is convergent, then the sequence $(x_n)_{n \ge 1}$ is convergent. Prove that it is continuous.       |
| 2 | Let be two natural numbers $n \ge 2, k$ , and $k  n \times n$ symmetric real matrices $A_1, A_2, \ldots, A_k$ .<br>Then, the following relations are equivalent:                                                                              |
|   | 1) $\left \sum_{i=1}^{k} A_i^2\right  = 0$                                                                                                                                                                                                    |
|   | 2) $\left \sum_{i=1}^{k} A_{i}B_{i}\right  = 0,  \forall B_{1}, B_{2}, \dots, B_{k} \in \mathcal{M}_{n}\left(\mathbb{R}\right)$                                                                                                               |
|   | denotes the determinant.                                                                                                                                                                                                                      |
| 3 | Let be a natural number $n \ge 2$ and two $n \times n$ complex matrices $A, B$ that satisfy $(AB)^3 = O_n$ .<br>Does this imply that $(BA)^3 = O_n$ ?                                                                                         |
| 4 | Let be a function $f$ of class $C^1[a, b]$ whose derivative is positive. Prove that there exists a real number $c \in (a, b)$ such that                                                                                                       |
|   | $f(f(b)) - f(f(a)) = (f'(c))^2(b-a).$                                                                                                                                                                                                         |
| _ | Grade 12                                                                                                                                                                                                                                      |
| 1 | <b>a)</b> Let be a continuous function $f : \mathbb{R}_{\geq 0} \longrightarrow \mathbb{R}_{>0}$ . Show that there exists a natural number $n_0$ and a sequence of positive real numbers $(x_n)_{n>n_0}$ that satisfy the following relation. |
|   | $n \int_0^{x_n} f(t)dt = 1,  n_0 < \forall n \in \mathbb{N}$                                                                                                                                                                                  |
|   | <b>b)</b> Prove that the sequence $(nx_n)_{n>n_0}$ is convergent and find its limit.                                                                                                                                                          |
| 2 | Let be a natural number $n$ and $2n$ real numbers $b_1, b_2, \ldots, b_n, a_1 < a_2 < \cdots < a_n$ . Show that                                                                                                                               |
|   | <b>a)</b> if $b_1, b_2, \dots, b_n > 0$ , then there exists a polynomial $f \in \mathbb{R}[X]$ irreducible in $\mathbb{R}[X]$ such that                                                                                                       |
|   | $f(a_i) = b_i,  \forall i \in \{1, 2, \dots, n\}.$                                                                                                                                                                                            |

**AoPS Community** 

## 2017 Romania National Olympiad

**b)** there exists a polynom  $g \in \mathbb{R}[X]$  of degree at least 1 which has only real roots and such that

$$g(a_i) = b_i, \quad \forall i \in \{1, 2, \dots, n\}.$$

- **3** Let *G* be a finite group with the following property: If *f* is an automorphism of *G*, then there exists  $m \in \mathbb{N}^*$ , so that  $f(x) = x^m$  for all  $x \in G$ . Prove that G is commutative. *Marian Andronache*
- **4** A function  $f : \mathbb{R}_{\geq 0} \longrightarrow \mathbb{R}$  has the property that  $\lim_{x \to \infty} \frac{1}{x^2} \int_0^x f(t) dt = 1$ .
  - a) Give an example of what f could be if it's continuous and f/id. doesn't have a limit at  $\infty$ . b) Prove that if f is nondecreasing then f/id. has a limit at  $\infty$ , and determine it.

