Art of Problem Solving

AoPS Community

2018 BAMO

Problems from the 2018 BAMO-8 and BAMO-12 exams
www.artofproblemsolving.com/community/c933499
by parmenides51

- February 27, 2018

A Twenty-five people of different heights stand in a 5×5 grid of squares, with one person in each square. We know that each row has a shortest person, suppose Ana is the tallest of these five people. Similarly, we know that each column has a tallest person, suppose Bev is the shortest of these five people.
Assuming Ana and Bev are not the same person, who is taller: Ana or Bev?
Prove that your answer is always correct.
B A square with sides of length 1 cm is given. There are many different ways to cut the square into four rectangles.
Let S be the sum of the four rectangles perimeters. Describe all possible values of S with justification.

C/1 An integer c is square-friendly if it has the following property:
For every integer m, the number $m^{2}+18 m+c$ is a perfect square.
(A perfect square is a number of the form n^{2}, where n is an integer. For example, $49=7^{2}$ is a perfect square while 46 is not a perfect square. Further, as an example, 6 is not square-friendly because for $m=2$, we have $(2) 2+(18)(2)+6=46$, and 46 is not a perfect square.)
In fact, exactly one square-friendly integer exists. Show that this is the case by doing the following:
(a) Find a square-friendly integer, and prove that it is square-friendly.
(b) Prove that there cannot be two different square-friendly integers.

D/2 Let points P_{1}, P_{2}, P_{3}, and P_{4} be arranged around a circle in that order. (One possible example is drawn in Diagram 1.) Next draw a line through P_{4} parallel to $P_{1} P_{2}$, intersecting the circle again at P_{5}. (If the line happens to be tangent to the circle, we simply take $P_{5}=P_{4}$, as in Diagram 2. In other words, we consider the second intersection to be the point of tangency again.) Repeat this process twice more, drawing a line through P_{5} parallel to $P_{2} P_{3}$, intersecting the circle again at P_{6}, and finally drawing a line through P_{6} parallel to $P_{3} P_{4}$, intersecting the circle again at P_{7}. Prove that P_{7} is the same point as P_{1}.
https://cdn.artofproblemsolving.com/attachments/5/7/fa8c1b88f78c09c3afad2c33b50c2be4635a png

E/3 Suppose that 2002 numbers, each equal to 1 or -1 , are written around a circle. For every two adjacent numbers, their product is taken; it turns out that the sum of all 2002 such products is negative. Prove that the sum of the original numbers has absolute value less than or equal
to 1000 . (The absolute value of x is usually denoted by $|x|$. It is equal to x if $x \geq 0$, and to $-x$ if $x<0$. For example, $|6|=6,|0|=0$, and $|-7|=7$.)

4 (a) Find two quadruples of positive integers (a, b, c, n), each with a different value of n greater than 3, such that $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=n$.
(b) Show that if a, b, c are nonzero integers such that $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}$ is an integer, then $a b c$ is a perfect cube.
(A perfect cube is a number of the form n^{3}, where n is an integer.)
5 To dissect a polygon means to divide it into several regions by cutting along finitely many line segments. For example, the diagram below shows a dissection of a hexagon into two triangles and two quadrilaterals:
https://cdn.artofproblemsolving.com/attachments/0/a/378e477bcbcec26fc90412c3eada855ae52b png
An integer-ratio right triangle is a right triangle whose side lengths are in an integer ratio. For example, a triangle with sides $3,4,5$ is an integer-ratio right triangle, and so is a triangle with sides $\frac{5}{2} \sqrt{3}, 6 \sqrt{3}, \frac{13}{2} \sqrt{3}$. On the other hand, the right triangle with sides $\sqrt{2}, \sqrt{5}, \sqrt{7}$ is not an integerratio right triangle. Determine, with proof, all integers n for which it is possible to completely dissect a regular n-sided polygon into integer-ratio right triangles.

