AoPS Community

2008 Federal Competition For Advanced Students, P1

Federal Competition For Advanced Students, Part 1, 2008

www.artofproblemsolving.com/community/c938800
by parmenides51

1 What is the remainder of the number $1\binom{2008}{0}+2\binom{2008}{1}+\ldots+2009\binom{2008}{2008}$ when divided by 2008 ?
2 Given $a \in R^{+}$and an integer $n>4$ determine all n -tuples $\left(x_{1}, \ldots, x_{n}\right)$ of positive real numbers
that satisfy the following system of equations: $\left\{\begin{array}{l}x_{1} x_{2}\left(3 a-2 x_{3}\right)=a^{3} \\ x_{2} x_{3}\left(3 a-2 x_{4}\right)=a^{3} \\ \ldots \\ x_{n-2} x_{n-1}\left(3 a-2 x_{n}\right)=a^{3} \\ x_{n-1} x_{n}\left(3 a-2 x_{1}\right)=a^{3} \\ x_{n} x_{1}\left(3 a-2 x_{2}\right)=a^{3}\end{array}\right.$

3 Let $p>1$ be a natural number. Consider the set F_{p} of all non-constant sequences of nonnegative integers that satisfy the recursive relation $a_{n+1}=(p+1) a_{n}-p a_{n-1}$ for all $n>0$.
Show that there exists a sequence (a_{n}) in F_{p} with the property that for every other sequence $\left(b_{n}\right)$ in F_{p}, the inequality $a_{n} \leq b_{n}$ holds for all n.

4 In a triangle $A B C$ let E be the midpoint of the side $A C$ and F the midpoint of the side $B C$. Let G be the foot of the perpendicular from C to $A B$. Show that $\triangle E F G$ is isosceles if and only if $\triangle A B C$ is isosceles.

