

AoPS Community

2008 Federal Competition For Advanced Students, P1

Federal Competition For Advanced Students, Part 1, 2008

www.artofproblemsolving.com/community/c938800 by parmenides51

1 What is the remainder of the number $1\binom{2008}{0} + 2\binom{2008}{1} + ... + 2009\binom{2008}{2008}$ when divided by 2008?

2	Given $a \in R^+$ and an integer $n > 4$ determine all n-tuples ($x_1,, x_n$) of positive real numbers	
		$\begin{cases} x_1 x_2 (3a - 2x_3) = a^3 \\ x_2 x_3 (3a - 2x_4) = a^3 \end{cases}$
	that satisfy the following system of equations: 〈	$ x_{n-2}x_{n-1}(3a - 2x_n) = a^3 x_{n-1}x_n(3a - 2x_1) = a^3 $

- **3** Let p > 1 be a natural number. Consider the set F_p of all non-constant sequences of nonnegative integers that satisfy the recursive relation $a_{n+1} = (p+1)a_n - pa_{n-1}$ for all n > 0. Show that there exists a sequence (a_n) in F_p with the property that for every other sequence (b_n) in F_p , the inequality $a_n \le b_n$ holds for all n.
- 4 In a triangle ABC let E be the midpoint of the side AC and F the midpoint of the side BC. Let G be the foot of the perpendicular from C to AB. Show that $\triangle EFG$ is isosceles if and only if $\triangle ABC$ is isosceles.

🐼 AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱 🙀