

AoPS Community

2004 Federal Competition For Advanced Students, P2

Federal Competition For Advanced Students, Part 2 2004

www.artofproblemsolving.com/community/c938857 by parmenides51, valerie

- Day 1
- 1 Prove without using advanced (differential) calculus: (a) For any real numbers a,b,c,d it holds that $a^6 + b^6 + c^6 + d^6 - 6abcd \ge -2$. When does equality hold? (b) For which natural numbers k does some inequality of the form $a^k + b^k + c^k + d^k - kabcd \ge M_k$ hold for all real a, b, c, d? For each such k,
- 2 Show that every set $\{p_1, p_2, \dots, p_k\}$ of prime numbers fulfils the following: The sum of all unit fractions (that are fractions of the type $\frac{1}{n}$), whose denominators are exactly the k given prime factors (but in arbitrary powers with exponents unequal zero), is an unit fraction again. How big is this sum if $\frac{1}{2004}$ is among this summands? Show that for every set $\{p_1, p_2, \dots, p_k\}$ containing k prime numbers (k > 2) is the sum smaller than $\frac{1}{N}$ with $N = 2 \cdot 3^{k-2}(k-2)!$
- 3 A trapezoid ABCD with perpendicular diagonals AC and BD is inscribed in a circle k. Let k_a and k_c respectively be the circles with diameters AB and CD. Compute the area of the region which is inside the circle k, but outside the circles k_a and k_c .
- Day 2
- Show that there is an infinite sequence a_1, a_2, \dots of natural numbers such that $a_1^2 + a_2^2 + \dots + a_N^2$ 4 is a perfect square for all N. Give a recurrent formula for one such sequence.

5	Solve the following system of equations in real numbers: <	$\begin{cases} a^2 = \frac{\sqrt{bc}\sqrt[3]{bcd}}{(b+c)(b+c+d)}\\ b^2 = \frac{\sqrt{cd}\sqrt[3]{cda}}{(c+d)(c+d+a)}\\ c^2 = \frac{\sqrt{da}\sqrt[3]{dab}}{(d+a)(d+a+b)}\\ d^2 = \frac{\sqrt{ab}\sqrt[3]{abc}}{(d+a)(d+a+b)} \end{cases}$
		$a = \overline{(a+b)(a+b+c)}$

6 Over the sides of an equilateral triangle with area 1 are triangles with the opposite angle 60° to each side drawn outside of the triangle. The new corners are P, Q and R. (and the new triangles APB, BQC and ARC)

AoPS Community 2004 Federal Competition For Advanced Students, P2

1)What is the highest possible area of the triangle *PQR*?2)What is the highest possible area of the triangle whose vertexes are the midpoints of the inscribed circles of the triangles *APB*, *BQC* and *ARC*?

Act of Problem Solving is an ACS WASC Accredited School.