Art of Problem Solving

AoPS Community

2004 Federal Competition For Advanced Students, P2

Federal Competition For Advanced Students, Part 22004

www.artofproblemsolving.com/community/c938857
by parmenides51, valerie

- Day 1

1 Prove without using advanced (differential) calculus:
(a) For any real numbers $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathrm{d}$ it holds that $a^{6}+b^{6}+c^{6}+d^{6}-6 a b c d \geq-2$.

When does equality hold?
(b) For which natural numbers k does some inequality of the form $a^{k}+b^{k}+c^{k}+d^{k}-k a b c d \geq M_{k}$ hold for all real a, b, c, d ? For each such k,

2 Show that every set $\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ of prime numbers fulfils the following: The sum of all unit fractions (that are fractions of the type $\frac{1}{n}$), whose denominators are exactly the k given prime factors (but in arbitrary powers with exponents unequal zero), is an unit fraction again.
How big is this sum if $\frac{1}{2004}$ is among this summands?
Show that for every set $\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ containing k prime numbers $(k>2)$ is the sum smaller than $\frac{1}{N}$ with $N=2 \cdot 3^{k-2}(k-2)$!

3 A trapezoid $A B C D$ with perpendicular diagonals $A C$ and $B D$ is inscribed in a circle k. Let k_{a} and k_{c} respectively be the circles with diameters $A B$ and $C D$. Compute the area of the region which is inside the circle k, but outside the circles k_{a} and k_{c}.

- Day 2

4 Show that there is an infinite sequence a_{1}, a_{2}, \ldots of natural numbers such that $a_{1}^{2}+a_{2}^{2}+\ldots+a_{N}^{2}$ is a perfect square for all N. Give a recurrent formula for one such sequence.

5 Solve the following system of equations in real numbers: $\left\{\begin{array}{l}a^{2}=\frac{\sqrt{b c} \sqrt[3]{b c d}}{(b+c)(b+c+d)} \\ b^{2}=\frac{\sqrt{c d} \sqrt[3]{c d a}}{(c+d)(c+d+a)} \\ c^{2}=\frac{\sqrt{d a} \sqrt[3]{d a b}}{(d+a)(d+a+b)} \\ d^{2}=\frac{\sqrt{a b} \sqrt[3]{a b c}}{(a+b)(a+b+c)}\end{array}\right.$
6 Over the sides of an equilateral triangle with area 1 are triangles with the opposite angle 60° to each side drawn outside of the triangle. The new corners are P, Q and R. (and the new triangles $A P B, B Q C$ and $A R C$)
1)What is the highest possible area of the triangle $P Q R$?
2) What is the highest possible area of the triangle whose vertexes are the midpoints of the inscribed circles of the triangles $A P B, B Q C$ and $A R C$?

