

AoPS Community 2009 Federal Competition For Advanced Students, P2

Federal Competition For Advanced Students, Part 2 2009

www.artofproblemsolving.com/community/c938866

by parmenides51, Jumbler, AlexLewandowski

If $x, y, K, m \in N$, let us define:
$a_m = \frac{2^{2^{\dots^2}}}{k twos}$, $A_{km}(x) = \frac{2^{2^{\dots^{x^{a_m}}}}}{k twos}$, $B_k(y) = \frac{4^{4^{\dots^{4^y}}}}{m fours}$,
Determine all pairs (x, y) of non-negative integers, dependent on $k > 0$, such that $A_{km}(x) = B_k(y)$
(i) For positive integers $a < b$, let $M(a, b) = \frac{\sum_{k=a}^{b} \sqrt{k^2 + 3k + 3}}{b - a + 1}$. Calculate $[M(a, b)]$
(ii) Calculate $N(a,b) = \frac{\sum_{k=a}^{0} [\sqrt{k^2 + 3k + 3}]}{b - a + 1}$.
Let <i>P</i> be the point in the interior of $\triangle ABC$. Let <i>D</i> be the intersection of the lines <i>AP</i> and <i>BC</i> and let <i>A'</i> be the point such that $\overrightarrow{AD} = \overrightarrow{DA'}$. The points <i>B'</i> and <i>C'</i> are defined in the similar way. Determine all points <i>P</i> for which the triangles <i>A'BC</i> , <i>AB'C</i> , and <i>ABC'</i> are congruent to $\triangle ABC$.
Day 2
Let <i>a</i> be a positive integer. Consider the sequence (a_n) defined as $a_0 = a$ and $a_n = a_{n-1} + 40^{n!}$ for $n > 0$. Prove that the sequence (a_n) has infinitely many numbers divisible by 2009.
Let $n > 1$ and for $1 \le k \le n$ let $p_k = p_k(a_1, a_2,, a_n)$ be the sum of the products of all possible combinations of k of the numbers $a_1, a_2,, a_n$. Furthermore let $P = P(a_1, a_2,, a_n)$ be the sum of all p_k with odd values of k less than or equal to n .
How many different values are taken by a_j if all the numbers $a_j(1 \le j \le n)$ and P are prime?
The quadrilateral PQRS whose vertices are the midpoints of the sides AB, BC, CD, DA, respectively of a quadrilateral ABCD is called the midpoint quadrilateral of ABCD. Determine all circumscribed quadrilaterals whose mid-point quadrilaterals are

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.